
These handouts aim to provide a fast-track introduction to elementary concepts in signals 
and systems that underpin the design and implementation of avionics and communication 
systems. These concepts arise in such diverse applications in aeronautics and 
astronautics, communications, acoustics, seismology, speech and image processing and 
control systems.

Signals are functions of time that convey information. For example, sensor readings over 
time constitute a signal. A microphone is a sensor that converts acoustic pressure to an 
electrical signal which is sometimes called an audio signal. 

Systems transform signals to other signals that are more convenient in the context of a 
selected application. For example, a signal might be noisy and a de-noising system would 
remove the noise and transform the noisy signal to a signal of higher quality. In the context 
of sensor readings, this would remove the nuisance volatility in the measurements, or in 
the context of audio communication, this would improve the hearing quality.  

Aviation electronics and communication systems are systems that extract information 
necessary for the use of an aircraft and facilitate the exchange thereof. Here, information 
might be relevant to navigation, surveillance, air traffic management, or other aspects of 
aviation.

Signals and systems refers to mathematical analysis tools that are used by engineers to 
specify, analyze and design systems including communication and avionic systems. These 
notes introduce fundamental elements for the investigation of signals and systems. 
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This document introduces signals, their representations, systems as entities that 
manipulate signals and their characterisation. As such, we start with a review of 
mathematical fundamentals to provide a smooth transition to the discussion of signals and 
systems as extensions of these fundamental notions. 
Section 1 introduces sets of numbers and functions. Trigonometric functions and complex 
numbers are extensively used in the study of avionics and communication systems which 
are explained in Section 2. 

The part on signals start by defining signals as functions of time in Section 3. Then, 
periodic functions that repeat a pattern over time are introduced as a basic signal class in 
Section 4. Fourier series expansions of such signals are given to represent them using 
well-known functions as building blocks.

Section 5 defines non-periodic signals as the complementary class of signals and 
introduces The Fourier Transform as a key tool to reveal their contents in terms of well-
known functions. 

The part of systems starts with the definition of systems in Section 6. A particularly useful 
class of systems are the linear and time-invariant (LTI) systems. This class is introduced in 
Section 7 and their characterisation in Section 8. Section 9 explains how to find the output 
of an LTI system to any input based on how they manipulate well-known functions.

Finally, we provide a summary in Section 10. 

The above provides an introduction to Signals & Systems, which consists of further topics 
in dedicated modules in engineering curricula. Topics beyond an introduction are left out of 
the scope of this module, e.g. explicit Fourier Series/Transforms computations, LTI filter 
design, z-transform, the discrete-time Fourier Transform, discrete Fourier Transform and 
the Fast Fourier Transform algorithm are left out of the scope of this document.   
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First, let us consider the set of natural numbers, or counting numbers, often denoted by 
ℕ = {1,2,3,4,5, … }. This set has infinitely many elements but it is countable. 

The set of integers ℤ = {… , −5, −4, −3, −2, −1,0,1,2,3,4,5, … } extend ℕ with negative 
numbers and one of the most important number of all: zero. 

Rational numbers ℚ are numbers that can be written as the ratio of two integers excluding 
division by zero. All decimals that terminate (e.g. 3.12322 as it equals to 313222/100000, 
which is a ratio of two integers) and all repeating decimals (e.g. 0.66) are rational numbers.

Real numbers ℝ extend rational numbers to include those which cannot be written as a 
ratio of two integers. For example, 2 is an irrational number which is the diagonal length 
of the unit square with edge lengths of one. Note that in decimal form, 2 is non-
terminating and non-repeating. Another important irrational number is the circumference to 
diameter ratio of the unit circle, 𝜋 (3.1417 … ). The list of important irrational numbers is 
never complete without Euler’s number e 71 … , which is the base of the natural 
logarithm.

One important property of the set of real numbers ℝ is that it is “uncountable”, i.e. it is not 
possible to index its elements as one could the elements of, for example, ℤ. There are 
infinitely many real numbers and they can be ordered to form a “real line”; zero placed at 
the centre, the line will have numbers increasing in magnitude to the right and negative 
numbers increasing in magnitude to the left. There are infinitely many real numbers in any 
non-zero length interval of the real-line.

These sets are endowed with the operations of summation, multiplication and their 
inverses subtraction and division to model and solve many real-world problems that 
involve “quantities” such as finding distances, areas and volumes since ancient times. 
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1.A Numbers

Real Numbers

Rational Numbers

Integers

Natural 
Numbers

.0

.-1

.-2
⋮

.1

.2
⋮

.1/2 (0.5)

.1/3 (0.33)
⋮

.2/3 (0.66)

.2/5 (0.4)
⋮

⋮

. 2 (1.414235…)

. 𝜋 (3.1417 … )

. e (71 … )



A function (or mapping) from a set 𝑋 to a set 𝑌 is a rule that assigns an element of X to 
one and only one element of 𝑌. The set 𝑋 is called the domain of the function, and the set 
𝑌 is called the range (or codomain) of the function. This is often denoted by 𝑔: 𝑋 → 𝑌 (and 
read as 𝑔 sends/maps elements in 𝑋 to elements in 𝑌). 

When 𝑋 and 𝑌 are finite, 𝑔 can be represented by listing the assignments it specifies as 
ordered pairs such that the element in the domain is written first, and the assigned element 
in the range is written second. On the slide is an example 𝑔: 𝒳 → 𝒴 for which, for example, 
(A,2) is an ordered pair with A ∈ 𝒳 and 2 ∈ 𝒴.

Note that a function cannot assign two elements of its range to the same element of its 
domain. For example, if the list of ordered pairs contained (A,3) in addition to the existing 
pairs, then 𝑔 would not be a function because A ∈ 𝒳 would have two values in g. Then, 𝑔
would be referred to as a “relation.”

A tabular representation of a function 𝑔 can be obtained by listing the elements of its 
domain along the columns and its range along the rows of a table, and then marking the 
ordered pairs that specify the function 𝑔.

Functions can be classified according to some of their properties/attributes; for example, if 
there is no element in 𝒴 that is mapped to more than one elements in 𝒳, 𝑔 is called a one-
to-one function. 

Some more details on the topic can be found in 
https://en.wikipedia.org/wiki/Function_(mathematics)#Injective,_surjective_and_bijective_f
unctions

For a discussion on signals and systems, let us consider real functions next.
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1.B.1 Functions
• A function maps elements of its domain set to elements in its range set, such that only one 

element of the range is assigned to a selected element of the domain.  

𝒳
. 𝐴
. 𝐵
. 𝐶
. 𝐷

. 1

. 2

. 3

𝒴
• On the right-hand side is a function 

𝑔: 𝒳 → 𝒴 whose domain is 
𝒳 = {𝐴, 𝐵, 𝐶, 𝐷}, and range is 𝒴 = 1,2,3 .

• The function 𝑓 can also be represented by 
listing ordered pairs: 
𝑔 = { 𝐴, 2 , 𝐵, 1 , 𝐶, 2 , (𝐷, 3)}.  

• 𝑔 can also be represented by a table that 
marks the ordered pairs.

3

2

1

A B C D

𝑔

𝒳

𝒴



Functions can have infinite domain and range sets such as the integers or real numbers. 

A function 𝑔: ℝ → ℝ (in other words, 𝑔 that maps real numbers to real numbers) with the 
set of real numbers as both its domain and range is referred to as a real function. Such 
functions are sometimes called real-valued functions. Because the ordered list 
representation of a real function would be an infinite list, it would not serve well to our 
purposes. One common way of representing a real functions is to write an ordered pair 
with its general rule. For example, polynomials are real functions with general rules that 
take the powers of elements in their domain sets, multiply them with some coefficients and 
finally sum all of them together. 

In the example above, a real number 𝑥 is mapped to a summation of its 0th , 1st, 2nd and 
3rd power after multiplying them with the coefficients of +1, +2, -1 and +1, respectively. 

A more common representation is to use the general rule of a function as in “𝑔 x = 𝑥3 −
𝑥2 + 2𝑥 + 1 (g of 𝑥 equals to 𝑥 cubed minus 𝑥 squared plus two 𝑥 plus one ) ∀𝑥∈ℝ (for all 𝑥
in the set of real numbers )”.

A visual representation of real functions are via their graphs. The graph of a real function is 
similar to the tabular function representation in the previous slide: the vertical axis is the 
domain and the horizontal axis is the range of the function. As real numbers can be 
ordered to form a continuum, we use the resulting real line on both axes. Then, the pairs 
(𝑥, 𝑔 𝑥 ) are marked on this “table” for 𝑥∈ℝ to depict the graph of the function 𝑔. Note that 
the real line axes have both negative and positive sides, and the number zero.

Composite functions are built by cascading a number of functions: For example, two 
function 𝑔: ℝ → 𝒴 and ℎ: 𝒴 → ℝ can be cascaded to obtain a composite real-function 𝑔 ∘
ℎ: ℝ → ℝ for which the general rule becomes 𝑔 ∘ ℎ 𝑥 = 𝑔(ℎ(𝑥)). Here, 𝒴 is the range set 
of 𝑔 and the domain set of  ℎ. It can be that 𝒴 = ℝ , or 𝒴 can be any other set. The crucial 
point is, 𝑔 and ℎ should satisfy the requirements of a function, i.e. map an element of their 
domain to one and only one element in their range.  
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1.B.2 Functions

• A real function maps real numbers to real numbers, i.e. 
g: ℝ → ℝ. For example polynomials are real functions. 

• Let us consider the polynomial function given by ordered 
pairs

𝑔 =  𝑥, 𝑥 − 𝑥 + 2𝑥 + 1  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ ℝ .
• 𝑔 can also be represented by depicting its graph, i.e. the 

locus of the ordered pairs it specifies similar to the table in 
the previous example.

• A more common representation for real functions is to use their general rule
as 𝑔: 𝑥 → 𝑥 − 𝑥 + 2𝑥 + 1 , or shortly, 

“𝑔 𝑥 = 𝑥 − 𝑥 + 2𝑥 + 1 ∀ 𝑥 ∈ ℝ”.
• Composite functions chain more than one function for their mapping. 
• For example 𝑔 ∘ ℎ: ℝ → ℝ denotes a composite function of two functions 𝑔: ℝ → 𝒴 and ℎ: 𝒴 → ℝ

with the general rule g ∘ ℎ 𝑥 = 𝑔(ℎ(𝑥)). 
• Here, 𝒴 can be a set different than ℝ provided that 𝑔 and ℎ satisfy the requirements of a function.



Trigonometric functions constitute an important function class for reasons that will become clear 
later. 

Let us start by considering a spinning wheel of radius 𝑟 = 1, and a certain point on the wheel which 
is marked with a nail. We are interested in the horizontal and vertical location of the this point at a 
frozen moment. 

Let us denote by 𝑥 the angle from the horizontal axis to the nail. The unit of 𝑥 is radians, or rad for 
short: 0 rad aligns with the horizontal axis 𝒖, 𝜋/2 rad aligns the vertical axis, 2𝜋 rad corresponds to 
one full cycle in the counter clockwise direction and aligns back with the horizontal axis. When 𝑥
equals to integer multiples of 2𝜋 rad, it corresponds to the nail completing the integer multiple 
many times full rotation. For example, if 𝑥 = 10 × 2𝜋, the line segment conjoining the centre must 
have rotated 10 times starting from a perfect alignment with the positive 𝒖 axis and arrive back at 

perfect alignment. What would x = 2𝜋 +
𝜋

3
=

7𝜋

3
rad correspond to? 

The function that map any real value of 𝑥 to the horizontal displacement of the nail from the vertical 
axis is called the cosine function. Because the radius of the wheel is unity (i.e. one), the values that 
cosine produces are between -1 and 1, inclusive. These values constitute an interval shown by [-
1,1]. Thus, 𝑐𝑜𝑠: ℝ → [-1,1].

Similarly, the function that map any real value of 𝑥 to the vertical displacement of the nail from the 
horizontal axis is called the sine function, and 𝑠𝑖𝑛: ℝ → [-1,1].

The pair (sin(𝑥), cos(𝑥)) unambiguously locates the nailed point on the 𝒖 − 𝒗 plane and is called 
the coordinates of the point. Because this point is on the circle with unit radius, the distance of this 
point from the origin is one. This is also verified by the Pythagorean Theorem that states the sum 
of the squares of the coordinates equals to the square of the radius here which is one. 

How can you recover 𝑥 if given only the values of sin 𝑥 , cos 𝑥 ? The function that maps (sin(𝑥), 
cos(𝑥)) values to 𝑥 is called the arctangent function (see, https://en.wikipedia.org/wiki/Atan2).

In practice, we can calculate both cosine and the sine very accurately for any value of 𝑥. Most 
programming languages and interpreters such as MATLAB provide built-in functions to evaluate 
cosine and sine. 
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2.A.1 Sinusoidal Functions

• Consider a spinning wheel of radius 𝑟 = 1 with a nail 
attached to mark a specific point. 

• For a frozen time instant, 𝑥 is the angle between the 
horizontal axis and the line segment conjoining the 
centre of the wheel to the marked point (in radians).

• Positive x indicates a counter clock-wise rotation and a 
negative x is a clock-wise rotation.

• The functions that give the horizontal and vertical 
placement of the nail from the centre are called the 
cosine and the sine, respectively.

𝒓 = 𝟏

𝒙

𝒄𝒐𝒔 (𝒙)

𝒔𝒊𝒏(𝒙)

𝒖

𝒗

• The horizontal coordinate of the nail along the 𝒖 axis is given by 𝑐𝑜𝑠: ℝ → [-1,1] with the general 
rule denoted by 𝑢 = 𝒄𝒐𝒔 𝒙 .

• The vertical coordinate of the nail along the 𝒗 axis is given by 𝑠𝑖𝑛: ℝ → [-1,1] with the general 
rule denoted by 𝑣 = 𝒔𝒊𝒏 𝒙 .

• The pair (sin (𝑥), cos (𝑥)) is called the coordinates of the (nailed) point on the 𝒖 − 𝒗 plane.
• Note that cos 𝑥 + sin 𝑥  = 1. 



Now suppose that the wheel has been in perpetual rotation. This can be described by 
using a function 𝑥 = 𝑔 𝑡 that maps a given time instant t ∈ ℝ to an angle value 𝑥. We 
further consider rotation with a constant rate of increase in 𝑥. Linear functions have 
constant rate of increase, and an implicit assumption here is alignment of the red vector 
with the positive direction of the horizontal axis at 𝑡 = 0 (i.e. our time origin reference). 
Therefore, 𝑔 𝑡 = 2𝜋𝑡 is an example function which can describe such rotation, i.e. 𝑥 =
2𝜋𝑡; the tip of the nail is at +1 on the u axis at time zero, and it will have completed one 
rotation at each second. Can you find other 𝑥 = 𝑔 𝑡 that satisfy the above requirements of 
i) constant rate of increase and ii) alignment with the positive direction of the horizontal 
axis at 𝑡 = 0?

The composite functions of cosine and sine with 𝑔 thus give the coordinates of the marked 
point during this perpetual rotation. In other words, the pair 𝑢, 𝑣 = (cos 2𝜋𝑡 , sin(2𝜋𝑡))
tells us the exact location of the nailed point on the 𝒖 − 𝒗 plane at any time t ∈ ℝ. Note 
that both cosine and sine evaluate the same when integer multiples of 2𝜋𝑡 is added to their 
arguments, i.e. 

cos 2𝜋𝑡 = cos 2𝜋𝑡 + 2𝜋 = cos 2𝜋𝑡 + 4𝜋 = ⋯ = cos 2𝜋𝑡 + 𝑚 × 2𝜋 = ⋯ for integer 𝑚,
and similarly

sin 2𝜋𝑡 = sin 2𝜋𝑡 + 2𝜋 = sin 2𝜋𝑡 + 4𝜋 = ⋯ = sin 2𝜋𝑡 + 𝑚 × 2𝜋 = ⋯

Given on the slide are graphs of these composite functions for t ∈[-5,5]. Note that the 
maximum value of these functions is 1 and the minimum value they take is −1. Both of the 
sinusoidal functions are repeating themselves over time which is expected following the 
above property. 

Here, a negative angle, i.e. 𝑥 < 0 means a clock-wise rotation of |𝑥| radians starting from 
an alignment with the positive 𝒖 direction. Keeping this in mind, one can see that the 
cosine is symmetric around zero as shown by cos −𝑥 = cos(𝑥) ; functions with this 
property are called even functions. The sine, on the other hand, is anti-symmetric around 
zero, i.e. sin −𝑥 = −sin (𝑥); functions with this property are called odd functions. They 
are also shifted versions of each other since as cos 𝑥 = sin(𝑥 +

𝜋

2
).  
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2.A.2 Sinusoidal Functions 

• Suppose the wheel is rotating with a constant rate of increase in 𝑥.

• This is described using a function
𝑔: ℝ →  ℝ that outputs 𝑥 for any given time instant t ∈ ℝ, 
i.e. 𝑥 = 𝑔 𝑡 with the general rule, e.g. 𝑔 𝑡 = 2𝜋𝑡.

• Equivalently 𝑥 = 2𝜋𝑡.

• The composite function 
𝑐𝑜𝑠 ∘ 𝑔: ℝ →  [−1,1] thus has the general rule 𝑢 = cos (2𝜋𝑡).

• Similarly 𝑠𝑖𝑛 ∘ 𝑔: ℝ →  [−1,1] has the general rule 𝑣 = sin (2𝜋𝑡).

• The graphs of these functions for 
𝑡 ∈ [−5,5] are on the left.

• Note that the graphs of 𝑢 and 𝑣 are repetitive (or periodic).

• Also note that 

• cos −2𝜋𝑡 = cos (2𝜋𝑡)

• sin −2𝜋𝑡 = −sin (2𝜋𝑡)

• Both functions appear as shifted versions of each other. Why?

𝒓 = 𝟏

𝒙

𝒄𝒐𝒔 (𝒙)

𝒔𝒊𝒏(𝒙)

𝒖

𝒗



So far, we have not explicitly specified how the wheel’s rotation was. Suppose that the 
wheel completes on full rotation in 𝑇 seconds. This parameter provides flexibility in 
modelling slower or faster turns. A second parameter that we might want to vary is the 
angle between the radius towards the marked point and the 𝒖 axis at time 𝑡 = 0; we might 
want to model when this angle is non-zero unlike the previous discussion and takes the 
value of 𝜙 (phi) radians. 

This function 𝑔 𝑡 = 2𝜋
1

𝑇
𝑡 + 𝜙 captures these as i) it will have increased by 2𝜋 for every 

𝑇 increase in 𝑡, and ii) it maps 𝑡 = 0 to 𝜙. Consequently, the 𝑢 and 𝑣 values repeat 
themselves in every 𝑇 second and evaluate at cos(𝜙) and sin(𝜙), respectively, at 𝑡 = 0. 
The figures on the top right first give the graph of 𝑔 𝑡 vs time for  evaluates 𝑇 = 2 and 
𝜙 = 𝜋/6. Compare this graph to the graph of the angle function in the previous slide. Note 
that the rate of increase is smaller, here. Why? What is the period 𝑇 in the previous 
example?

The 𝑢 and 𝑣 functions against time are given next. Note that because 𝜙 is non-zero, the 
cosine function now does not peak at 𝑡 = 0 and the sine function does not cross zero 𝑡 =
0. In fact, 𝜙 induces a shift to their graphs.

For the sinusoidal functions, f = 1/𝑇 is called their frequency. This quantity is a positive 
real number since 𝑇 > 0 and 𝑇 ∈ ℝ , in general, and equals to the number of cycles 
sinusoidal functions exhibit in one second. For further reading on these functions, see 
https://en.wikipedia.org/wiki/Sine_and_cosine 
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2.A.3 Sinusoidal Functions 
• Let us consider the following case in which

1) The wheel completes one full rotation in 𝑇 seconds.
2) The point marked with the nail is not at +1 on the 𝒖 axis at time 𝑡 =

0, but it makes an angle of 𝜙 with the 𝒖 axis.
• This is described using the function

𝑔 𝑡 = 2𝜋
1

𝑇
𝑡 + 𝜙

• The rate of increase in angle is determined by .

• The function 𝑐𝑜𝑠 ∘ 𝑔: ℝ →  [−1,1] now has the general rule 𝑢 = cos (2𝜋 𝑡 + 𝜙).

• Similarly 𝑠𝑖𝑛 ∘ 𝑔: ℝ →  [−1,1] has the general rule 𝑣 = sin (2𝜋 𝑡 + 𝜙).

• Graphs for 𝑇 = 2 and 𝜙 = are on the top right. 

• is called the frequency of both u and v:

𝑓 = , 

which also equals to the number of cycles in one             seconds. 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 10 Hz

Examples:



Trigonometric functions and complex numbers are related in many different ways. 

Complex numbers arose from the solutions of polynomial equations. For example, 
consider the simple equation 𝑥2 = 𝑎 for a ∈ ℝ. If a > 0 , then there are two solutions which 
are 𝑥 = + 𝑎 and 𝑥 = − 𝑎. If  a < 0, is there a solution to this equation? Let us unpack this 
question: If the solution is sought in the set of real numbers ℝ, then there are no solutions, 
i.e. no element in ℝ yields a negative number when squared. If we are allowed to use 
numbers outside of the set of real numbers ℝ, solutions do exist!

Numbers that have negative squares are called imaginary numbers. The set of imaginary 
numbers is often denoted by 𝕀. For example, 2 −1 is an imaginary number which yields 
− 4 when squared. Similarly, −2 −1 squared is −4. Therefore, they are solutions to the 
equation 𝑥2 = 𝑎 for 𝑎 = −4. In general, the solutions of this equation for any negative a will 
have the form 𝑥 = + −1 −𝑎 and 𝑥 = − −1 −𝑎 and are imaginary numbers. Therefore, 
any imaginary number can be written as the multiplication of −1 with a real number. In 
other words, if a ∈ 𝕀 , then a = −1 𝑏 where 𝑏 ∈  ℝ. Here, −1 is referred to as the 
imaginary unit and denoted by the letter “i” in mathematics, and the letter “j” in engineering 
(since “i” is often reserved to denote electrical current). Thus, a = 𝑗 𝑏.

A complex number is a sum of a real number and an imaginary number. The set of 
complex numbers is denoted by  ℂ and thus any element of this set z ∈ ℂ has the form z =
𝑧𝑟𝑒𝑎𝑙 + 𝑗𝑧𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 where 𝑧𝑟𝑒𝑎𝑙 and 𝑧𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 ∈  ℝ and called the real and the imaginary part 
of z, respectively.
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2.B.1 Complex Numbers
• All the elements of ℝ result with non-negative values when squared: If 𝑥 ∈ ℝ, then 𝑥 ≥ 0.

• Numbers which have negative squares are called imaginary numbers and constitute the set 
of imaginary numbers 𝕀. 
E.g. Both −1 × 2 and −1 × (−2) ∈ 𝕀.

• In general, any imaginary number a ∈ 𝕀  can be written as the multiplication of −1 with a real 
number, i.e. a = −1 𝑏 where 𝑏 ∈  ℝ.

. 2 + 𝑗 2

. 2 − 𝑗 2

. 𝜋 + j 𝜋

. 𝜋 − j 𝜋

. e + 𝑗 𝑒

. e − 𝑗 𝑒

. −2

. −𝜋

. −𝑒

. 2

. 𝜋

. e

ℝ

where 𝑧 and 𝑧 are both real numbers. They are called the real and the 
imaginary part of the complex number z, respectively. 

• The imaginary unit −1 is often denoted by "𝑖" in 
mathematics and  "𝑗" in 
engineering; e.g. a = 𝑗 𝑏.

• A complex number is a sum of a real number and an 
imaginary number. 
The set of complex numbers is 
denoted by ℂ. Any complex number 
z ∈ ℂ is in the form

z = 𝑧 + 𝑗𝑧 ,



As we order the real numbers in ℝ into a line, we can order the imaginary numbers into the 
imaginary line based on the real factor 𝑏 ∈ ℝ in  a = 𝑗 𝑏. Let us consider how to collate 
complex numbers. Because for a z ∈ ℂ the real and imaginary parts are arbitrary, and both 
have their own line, we can place each complex number on a plane that has real line as 
the horizontal axis and the imaginary line as the vertical axis. This is called the complex 
plane; the real and imaginary parts of z = 𝑧𝑟𝑒𝑎𝑙 + 𝑗𝑧𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 give the Cartesian coordinates 
of z on this plane as (𝑧𝑟𝑒𝑎𝑙,  𝑧𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 ). 

Complex numbers also have polar representations on the complex plane whereby the 
distance from the origin and angle with respect to positive real axis as the reference give 
the point’s location. The distance from the origin is referred to as the absolute value (or 
modulus) of z and found using the Pythagoras’ Theorem. The angle 𝑥 of the complex 
number z is also called its phase or argument, and can be found using the inverse tangent 
function 𝑎𝑟𝑐𝑡𝑎𝑛𝑔𝑒𝑛𝑡(𝑧𝑟𝑒𝑎𝑙,  𝑧𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 ) (see, https://en.wikipedia.org/wiki/Atan2).

Leonhard Euler’s formula reveals the relations between trigonometric functions and the 
complex exponential function 𝑒 𝑗𝑥. Here, 𝑒 is the base of the natural logarithm and also 
referred to as Euler’s number. 𝑒 raised to the complex power of 𝑗𝑥 equals to the complex 
number given by cos 𝑥 + 𝑗 sin 𝑥 . This formula also relates the canonical representation 
of a complex number to its polar representation via z = 𝑧𝑟𝑒𝑎𝑙 + 𝑗𝑧𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 = 𝑧 𝑒 𝑗∠𝑧.

The red vector is a graphical representation of  z. Such vector representations of complex 
numbers are called phasors.

For further details on Euler’s formula, see https://en.wikipedia.org/wiki/Euler%27s_formula.

For a slightly wider perspective on taking 𝑒 to a complex power, see the short clip here: 
https://www.youtube.com/watch?v=v0YEaeIClKY
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2.B.2 Complex Numbers 
• Complex numbers in ℂ can be mapped onto a plane which is called the 

complex plane. 

• The coordinates of z ∈ ℂ given by  z = 𝑧 + 𝑗𝑧

on the complex plane are (𝑧 , 𝑧 ).

• The absolute value (or modulus)
of z is the length from the origin:

z = 𝑧 + 𝑧 .

• The phase (or argument) of z ∈ ℂ is found using a trigonometric function 
called the arctangent:
∠𝑧 = arctan (𝑧 , 𝑧 ).

𝒓 = 𝒛

∠𝒛

𝒛𝒓𝒆𝒂𝒍

= |𝒛|𝒄𝒐𝒔 (∠𝒛)

𝒛𝒊𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

   = 𝒛 𝒔𝒊𝒏(∠𝒛)

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

• Euler’s formula explicitly relates trigonometric functions and complex numbers:

      

                                

• Thus, z = 𝑧 + 𝑗𝑧 and z = |𝑧|𝑒 ∠ . The second representation is called the polar 
representation of z.

• The red vector representing a complex number is also called its phasor representation.

𝑒 = cos 𝑥 + 𝑗 sin(𝑥) (1)



The complex conjugate of a complex number 𝑧 is also a complex number and has the 
same absolute value as 𝑧 and a phase equal in magnitude but opposite in sign. It is often 
denoted by 𝑧∗ where superscript * denotes the conjugation operation, i.e. multiplying the 
phase of 𝑧 in its polar form with −1 (see the top-right figure). Equivalently, if one considers 
the canonical (or conventional) form of 𝑧, its conjugate 𝑧∗ is the complex number with an 
equal real part and an imaginary part equal in magnitude but opposite in sign. 

In general, 𝑧 and 𝑧∗ form a conjugate pair; the complex conjugate of 𝑧∗ is 𝑧 , i.e. (𝑧∗)∗ = 𝑧 .

When complex conjugate pairs are added up, their imaginary parts cancel each other out 
yielding a real valued number that equals to twice the real part of (any of the number in) 
the pair.

Multiplication of conjugate pairs similarly result with a real-valued number which equals to 
the squared absolute value  (any of the number in) the pair.

Note that, there are functions that map complex numbers to complex numbers. For 
example, a polynomial 𝑔: ℂ → ℂ when evaluated for complex numbers results with complex 
numbers and is a complex function. The fundamental theorem of algebra states that there 
are N complex roots of a polynomial of degree N. For example, the roots of the example 
polynomial in Section 1.B are (approximately) 0.7+j1.4 , 0.7-j1.4 and -0.39.

For further details on complex numbers, see your engineering mathematics and calculus 
textbooks and https://en.wikipedia.org/wiki/Complex_number .

An excellent series of video-lectures are here: 
https://youtube.com/playlist?list=PLMrJAkhIeNNQBRslPb7I0yTnES981R8Cg
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2.B.3 Complex Numbers 

• Following Euler’s formula in (1), and that the cosine and 
sine are even and odd functions, respectively, one gets 

      
                 

• The complex conjugate of a complex number 
z = 𝑧 + 𝑗𝑧 = 𝑧 𝑒 ∠

1. Has the same absolute value as 𝑧,
2. Has a phase that is equal in magnitude to 𝑧’s phase but 

opposite in sign,
3. Denoted by 𝑧∗:

∠𝒛 𝒛𝒓𝒆𝒂𝒍

𝒛𝒊𝒎

𝑹𝒆𝒂𝒍

𝑰𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚

𝑧 = 𝑧 𝑒
∠

−𝒛𝒊𝒎
𝑧∗ = 𝑧 e

∠

−∠𝒛

𝑧∗ = 𝑧 e ∠ .

𝑧∗ = 𝑧 cos −∠𝑧 + 𝑗 𝑧 sin(−∠𝑧)
= 𝑧 cos ∠𝑧 − 𝑗 𝑧 sin ∠𝑧
= 𝑧 − 𝑗𝑧

i.e. 𝑅𝑒 𝑧∗ = 𝑅𝑒 𝑧 , 𝐼𝑚 𝑧∗ = −𝐼𝑚{𝑧}.

• The multiplication of 𝑧 with its complex conjugate 𝑧∗ equals to its absolute value squared:  

𝑧 × 𝑧∗ = 𝑧

• In the summation of 𝑧 with its complex conjugate 𝑧∗, imaginary parts cancel each other out 
and the result is twice the real part: 𝑧 + 𝑧∗ = 2 × 𝑅𝑒{𝑧}

Conjugate pair (𝑧, 𝑧∗)



Signals are functions of time that convey some useful information. For example, a sensor 
measurements over time, such as the output of an air speed sensor on an aircraft, is a 
signal. A microphone is a sensor that converts acoustic pressure to electrical “signals.” The 
electrical output of an antenna is a signal. A video is an audio-visual signal… 

Signals can be real valued or complex valued. We can classify signals as energy or power 
signals. Let us denote a signal by  𝑠 𝑡  and remind that power is the energy per unit time. 
The energy of a signal is given in (2). If this integral is finite, i.e. 𝐸 < ∞, then the signal is 
referred to as an energy signal. If the energy integral in (2) is not finite, then, first we 
should restrict the bounds of the time interval we are calculating the energy for to some – 𝐿
and L. Second, we scale the energy term with the length of the integration interval, i.e. 2𝐿. 
Thus, now power is computed as the energy term is scaled with time. As different intervals 
might have different power values, we are interested in the overall average, hence take the 
limit in (3) as 𝐿 tends to infinity. If the limit exists and is finite, then 𝑠 𝑡  is a power signal. 
For example, periodic signals are power signals which are discussed next. 

Real-life signals of interest are always energy signals as no signal spans the entire time 
axis. However, it might still be an impractically large value and an average power is 
numerically more sensible especially when we deal with periodic signals. For example, the 
total electrical energy consumed by a kettle throughout its operational life-time is a finite 
number. Nevertheless, the average power of the (periodic) line signal that was drawn from 
the grid when working is a more useful quantity. There is more information on this in the 
remaining part of these notes.
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3 Signals: Definition

• The air speed sensor readings over time.
• A microphone’s electrical signal at the 

output.
• The electrical output of an antenna.
• A video is an audio-visual signal.

• A  real valued signal 𝑠: ℝ →  ℝ maps a time value 𝑡 to a real number. A complex 
signal 𝑠: ℝ →  ℂ outputs a complex number 𝑠(t).

• The energy of a signal is given by

• If 𝐸 is finite, i.e. 𝐸 < ∞, 𝑠(𝑡) is referred to as an energy signal. 

• The power of a signal is given by 

• If 𝑃 is non-zero and finite, i.e. 0 < P < ∞, 𝑠(𝑡) is a power signal. 

𝐸 = 𝑠 𝑡 𝑑𝑡 (2)

𝑃 = lim
→

1

2𝐿
𝑠 𝑡 𝑑𝑡 (3)

• Signals are functions of time and may describe a wide variety of phenomenon. E.g.

S
ou

rc
e

: 
[1

] F
ig

ur
e

 1
.3aero 2 5 0

𝑠
𝑡



Periodic signals are very common in avionics and communication systems. A signal is periodic if it 
repeats a pattern over time. Mathematically, a signal 𝑠 𝑡 is periodic with the fundamental period 𝑇
if (4) is true for all 𝑡 ∈ ℝ and integer 𝑚, and  𝑇 is the smallest of all such periods. The last condition 
is set out because if a signal is periodic with 𝑇, then it is periodic with 2𝑇, 3𝑇, …

One of the most commonly used periodic signals is the complex exponential signal given by (5). To 
see the periodicity, use (1) to expand (5) as

𝑒 𝑗2𝜋
1

𝑇
𝑡 = cos 2𝜋

1

𝑇
𝑡 + 𝑗 sin(2𝜋

1

𝑇
𝑡). The real and imaginary parts of this complex function are 

nothing but the coordinates of a nail’s tip attached on a spinning wheel of radius one as shown in 
Section 2.A. In other words, we model the coordinates of a nail on a spinning wheel by using a 
complex function of time called the complex exponential. Because the nail’s tip is going to be at the 
same position periodically with a period that equals to the spinning period of the wheel, the real 
and imaginary parts of the complex exponential are also periodic with 𝑇. As an exercise, show that

𝑠 𝑡 = 𝑒 𝑗2𝜋
1

𝑇
𝑡 ⇒ 𝑠 𝑡 + 𝑚𝑇 = 𝑒 𝑗2𝜋

1

𝑇
𝑡 for all 𝑡 ∈ ℝ and integer 𝑚 (Hint: substitute 𝑡 + 𝑚𝑇 in 𝑒 𝑗2𝜋

1

𝑇
𝑡 , 

use (1) and show that cos 2𝜋
1

𝑇
𝑡 and sin 2𝜋

1

𝑇
𝑡 are periodic with the fundamental period of 𝑇).

The second important property of the complex exponential is that its absolute value is one, i.e. 
𝑠(𝑡) = 1. Thus, in the energy and power formulae in (2) and (3) 𝑠 𝑡 2 = 1. As a result, E 

diverges and P converges to 1, i.e. the complex exponential is a power signal. Complex 
exponential signals are also referred to as harmonic functions.

The graph of the function that maps 𝑡 ∈ ℝ to the angle value 2𝜋
1

𝑇
𝑡 is linear and passes through the 

origin; the real and the imaginary parts of the complex exponential signal are composite functions 
of this mapping and cosine and sine. Because the latter trigonometric functions are periodic in their 
argument with 2𝜋, the complex exponential function is periodic with  𝑇.

There are other periodic functions which have graphs different than that of a sinusoidal function, 
e.g. see the graph on the top right. A practically important family of 𝑇 periodic functions are related 
to complex exponential functions with fundamental frequencies 0, 𝑇, 2𝑇, 3𝑇, … This point will be 
clarified later in this section.   
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4.A.1 Periodic Signals

• E.g. The complex exponential signal 

is periodic with fundamental period T.     
Following Euler’s formula (1):
• The real part of 𝑠 𝑡 is 

• The imaginary part of 𝑠 𝑡 is 

𝑠(𝑡 + 𝑚𝑇) = 𝑠(𝑡). 

• A signal is periodic with fundamental period 𝑇 if 
it equals to the concatenation of a 𝑇 long non-
periodic segment of itself.

• Mathematically, a signal 𝑠 𝑡 is periodic with 
fundamental period 𝑇 if for all 𝑡 and integer m

𝑠 𝑡 = 𝑒

𝑅𝑒{𝑠 𝑡 } = cos(2𝜋
1

𝑇
𝑡)

𝐼𝑚{𝑠 𝑡 } = sin(2𝜋
1

𝑇
𝑡)

𝒔 𝒕 = 𝒆𝒋𝟐𝝅
𝟏
𝑻

𝒕

∠𝒔(𝒕) = 𝟐𝝅
𝟏

𝑻
𝒕

𝒄𝒐𝒔 (2𝜋
1

𝑇
𝑡)

𝒔𝒊𝒏(2𝜋
1

𝑇
𝑡)

Real

Imaginary

(4)

(5)
T T-TT

T T-TT

T T-TT



Let’s first consider multiplying the complex exponential in (5) with a complex number, in 
other words, weighting it with a complex weight factor. Using the polar form of complex 
numbers shown in Section 2.B, any complex weight factor 𝛼 (read alpha) is going to have 
the form 𝛼 𝑒 𝑗∠𝛼 where 𝛼 is the absolute value of 𝛼 and  ∠𝛼 is its phase. Now consider 
the complex exponential of period 𝑇 at time  𝑡 = 0, i.e. 𝑠(0). The absolute value 𝑠(0) is 
one and the phase ∠𝑠(0) is zero. Therefore, the weighted complex exponential given in (6) 
will have the same absolute value and the phase as 𝛼. In other words, at 𝑡 = 0, the 
weighted exponential equals to 𝛼.

The resulting changes in the amplitude and phase of the graphs depicting the real and the 

imaginary parts of 𝑤 are given on the slide for an example where 𝛼 = 1.5𝑒 𝑗
𝜋

3. The red 
curves are the real and imaginary parts of 𝑠(𝑡) which deviate between -1 and 1 as its 
absolute value is one. The blue curves are the real and imaginary parts of the weighted 
complex exponential 𝑤 𝑡 which deviate between -1.5 and 1.5 as the absolute value of 
𝑤 𝑡 equals to that of  𝛼 which, in this example, is 1.5. The cosine and the sine functions 
now have an additional phase term ∠𝛼 due to the weight factor: at time 𝑡 = 0, the real part 
of 𝑤 𝑡 is not at its peak unlike 𝑠(𝑡) due to ∠𝛼. Similarly, its imaginary part does not 
evaluate to zero for this phase term.

As a result, the weight factor 𝛼 shifts the complex exponential in time by its phase, and 
readjusts its magnitude by its absolute value. 
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4.A.2 Periodic Signals

Following (1)
• The real part of w 𝑡 is 

• The imaginary part of w 𝑡 is 

𝑤 𝑡 = 𝛼𝑠(t),

= 𝛼 𝑒 ∠

• Let us multiply a complex exponential with a 
complex number 𝛼 (or, weight factor) given by

• The weighted signal w 𝑡 is also periodic with 
fundamental period 𝑇:

𝑅𝑒{𝑤 𝑡 } = |𝛼| cos(2𝜋
1

𝑇
𝑡 + ∠𝛼)

𝐼𝑚{𝑤 𝑡 } = |𝛼|sin(2𝜋
1

𝑇
𝑡 + ∠𝛼)

𝒔 𝒕 = 𝟎

Real

Imaginary

𝒘 𝒕 = 𝟎 = 𝜶

∠𝜶𝛼 = 𝛼 + 𝑗𝛼
    = 𝛼 𝑒 ∠

𝜶𝑹𝒆

𝜶𝑰𝒎

(6)

E.g. 𝛼 = 1.5𝑒 , 𝑇 = 1



As a second step, now consider taking the superposition of multiple weighted complex 
exponentials by summing them up. This way, a larger variety of periodic signals can be obtained. 
In the case of two components in superposition, the resulting signal will be in the form of 𝑔2(𝑡) on 
the slide, i.e. 𝑔2(𝑡) is a sum of two weighted complex exponentials with fundamental period 𝑇 and 
𝑇/2. Therefore, it is periodic with period 𝑇. This signal can be viewed as capturing the coordinates 
of a point on a circle which rotates on another circle. This is illustrated on the top right figure: the 
real-axis coordinate of the point (tip of the yellow vector) will also be the sum of the real parts of 𝛼1

and 𝛼2 at time 𝑡 = 0. The imaginary-axis coordinate of this point is the sum of the imaginary parts 
of the 𝛼1 and 𝛼2 at the same time instant. In other time instants, these coordinates will be the sum 
of the real and imaginary parts of the weighted complex exponentials.

Let us now consider finding the superposition of three weighted complex exponentials with 
fundamental periods of 𝑇, 𝑇/2 and 𝑇/3, respectively. Equivalently, these are complex exponentials 

of frequency f =
1

𝑇
, 2f and 3f. The resulting signal is denoted by 𝑔3(𝑡) where the subscript 3 

denotes that a superposition of three components is used. This signal has a fundamental period of 
𝑇, and illustrated on the bottom right figure. By using three weighted components, we can capture 
a larger variety of signals than can be captured by only two components.

Remember from Section 2.A that the de facto alternative way of representing functions of time is to 
list ordered pairs which in this case would lead to the impractical number of items equalling to the 
size of the set ℝ. On the other hand, the weighted sums of complex exponentials provide a 
feasible alternative for the representation of a subset of all possible functions with a fundamental 

period of 𝑇 based on known periodic functions with periods of 𝑇,
2

𝑇
, …

The circle-upon-circle structures on the slide are called epicycle and were first used by the ancient 
Greeks to study the orbits of planets (https://en.wikipedia.org/wiki/Deferent_and_epicycle).
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4.A.3 Periodic Signals

𝑔 𝑡 = 𝛼 𝑒 + 𝛼 𝑒 /

• Let us consider the superposition of two weighted complex 
exponentials the first with a fundamental period 𝑇 (fundamental 
frequency  𝑓 = 1/𝑇), and the second with a fundamental period 

(frequency 2𝑓):

• Let us find the superposition of three weighted complex 
exponentials the first with a fundamental period 𝑇 (frequency 
 𝑓 = 1/𝑇), the second with a fundamental period 𝑇/2 (frequency 

2𝑓), and the third with a fundamental period (frequency 3𝑓):

Real

Imaginary
𝑔 𝑡 = 0 = 𝛼 + 𝛼

𝜶𝟏,𝑹𝒆

𝜶𝟏,𝑰𝒎

Period 𝑇

𝜶𝟐,𝑰𝒎

𝜶𝟐,𝑹𝒆

Period 𝑇/2

𝑔 𝑡 = 0
= 𝛼 + 𝛼 + 𝛼

Real

Imaginary

𝜶𝟏,𝑹𝒆

𝜶𝟏,𝑰𝒎

Period 𝑇

𝜶𝟐,𝑰𝒎

𝜶𝟐,𝑹𝒆

Period 𝑇/2

Period 𝑇/3

𝜶𝟑,𝑹𝒆

𝜶𝟑,𝑰𝒎

𝑔 𝑡 = 𝛼 𝑒 + 𝛼 𝑒 / + 𝛼 𝑒 /

Note: The vector representations on the right-hand side are 

also called phasors.



In a two-component superposition example, assume that the fundamental period 𝑇 = 1 s 
and the (complex) weights are as follows: the first weight’s absolute value is 1, and its 
phase is  −𝜋/4. The second weight has the same phase as the first weight (i.e. the 
phasors in the top right figure of the previous slide are aligned at 𝑡 = 0), but its magnitude 
is half as the first one. The real and imaginary parts of these components of 𝑇 = 1 and 𝑇 =
1/2 are depicted in the top-right figure.  The resulting two component superposition 𝑔2(𝑡)
is depicted in the third and the fourth tabs as the graphs of its real and imaginary parts 
over time, respectively.

Continuing with the same example for the three component superposition 𝑔3(𝑡), we select 
a third weight 𝛼3 that has the negative phase of the other weights, i.e. 𝜋/4, and a 
magnitude of 1/3. The real and imaginary parts of the resulting third weighted component 
of period 𝑇 = 1/3 is depicted in the bottom-left figure together with the first two 
components. The resulting superposition’s real and imaginary parts are very different 
compared to the graphs of the two component case. 

When 𝛼3 = 0 the three component superposition equals to the two component 
superposition, and by varying 𝛼3 signals that could not be represented by only two 
components can now be represented. Therefore, addition of more weighted complex 
exponentials extend the set of periodic functions that can be represented by using a 
weighted sum of complex exponentials.  
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4.A.4 Periodic Signals
• The graphs on the right-hand side are for 

• 𝑇 = 1 s, 

• 𝛼 = 1𝑒

• 𝛼 = 𝑒

in finding 𝑔 𝑡 .

• The graphs on the left-hand side are for 
• 𝑇 = 1 s, 

• 𝛼 = 1𝑒

• 𝛼 = 𝑒

• 𝛼 = 𝑒

in finding 𝑔 𝑡 .



Before going into further details of the set of periodic functions that can be written as a 
superposition of weighted complex exponentials, let us introduce a second type of complex 
exponential which represents clockwise rotations. This function is given in (7) and is the 
complex conjugate of the complex exponential in (5) for all 𝑡 ∈ ℝ. 

Because the sign of the factor getting multiplied with the time variable 𝑡 is negative, 𝑠𝑐𝑤 𝑡
is sometimes referred to as a complex exponential with “negative frequency”; this term 
sometimes might be misleading. The “negative” quantity here is related to that a clockwise 
rotation of a point corresponds to the angle of the phasor with respect to the positive real 
axis taking negative values and decreasing by the rotation as 𝑡 grows.

Euler’s formula when used with (7) yields  

𝑠𝑐𝑤 𝑡 = cos −2𝜋
1

𝑇
𝑡 + 𝑗 sin −2𝜋

1

𝑇
𝑡 .

In Section 2.A, we showed that cosine is an even function and sine is an odd function. In 

other words, cos −2𝜋
1

𝑇
𝑡 = cos 2𝜋

1

𝑇
𝑡 and sin −2𝜋

1

𝑇
𝑡 = − sin 2𝜋

1

𝑇
𝑡 . As a result

𝑠𝑐𝑤 𝑡 = cos 2𝜋
1

𝑇
𝑡 − 𝑗 sin 2𝜋

1

𝑇
𝑡 .
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4.A.5 Periodic Signals
• Let us consider a clockwise complex exponential with a 

fundamental period 𝑇

𝑠 𝑡 = 𝑒 (7)

𝑅𝑒 𝑠 𝑡 = 𝑅𝑒 𝑠 𝑡 = cos 2𝜋
1

𝑇
𝑡 , 

𝐼𝑚 𝑠 𝑡 = −𝐼𝑚 𝑠 𝑡 = − sin 2𝜋
1

𝑇
𝑡 .

• 𝑠 𝑡 is the complex conjugate of the complex 
exponential 𝑠 𝑡 in (5):

• The frequency of 𝑠 𝑡 is 𝑓 = −1/𝑇 (negative frequency indicating reverse 
rotation with respect to the reference).

𝒔𝒄𝒘 𝒕 = 𝒆 𝒋𝟐𝝅
𝟏
𝑻

𝒕

𝒄𝒐𝒔 (2𝜋
1

𝑇
𝑡)

𝒔𝒊𝒏(−2𝜋
1

𝑇
𝑡)

Real

Imaginary

∠𝒔 𝒕 = −𝟐𝝅
𝟏

𝑻
𝒕



Now, consider the superposition of a pair of weighted complex exponentials such that they 
constitute a complex conjugate pair. In other words, if one of the components is selected 

as 𝑤1 𝑡 = 𝛼1 𝑒 𝑗2𝜋
1

𝑇
𝑡 (with fundamental period 𝑇), then the second component is its 

complex conjugate 𝑤1 𝑡
∗
=𝛼1

∗ 𝑒−𝑗2𝜋
1

𝑇
𝑡. Now let us consider 𝑤1 𝑡 +  𝑤1 𝑡

∗
. From slide 

2.B.3, we know that this summation is twice the real part of 𝑤1 𝑡 (or equivalently, 𝑤1 𝑡
∗

). Therefore, we need to find 2𝑅𝑒{𝑤1 𝑡 }. The real part of 𝑤1 𝑡 is the first term on the 
right-hand side of the last equality below obtained after some rearrangements:

𝑤1 𝑡 = 𝛼1 𝑒 𝑗∠𝛼1𝑒 𝑗2𝜋
1

𝑇
𝑡

= 𝛼1 𝑒 𝑗(2𝜋
1

𝑇
𝑡+∠𝛼1)

= 𝛼1 cos 2𝜋
1

𝑇
𝑡 + ∠𝛼1 + 𝑗 𝛼1 sin 2𝜋

1

𝑇
𝑡 + ∠𝛼1

As a result, 2𝑅𝑒 𝑤1 𝑡 = 2 𝛼1 cos 2𝜋
1

𝑇
𝑡 + ∠𝛼1 .

Therefore, two complex exponentials with complex conjugate weights sum up to yield a 
sinusoidal function!
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4.A.6 Periodic Signals

𝑔 𝑡 = 2 𝛼 cos 2𝜋
1

𝑇
𝑡 + ∠𝛼

Real

Imaginary

𝜶𝟏,𝑰𝒎

𝜶𝟏,𝑰𝒎
Period 𝑇

Period 𝑇

• Now, let’s consider the superposition of a pair of weighted 
complex exponentials such that they constitute a complex 
conjugate pairs, i.e. 

• 𝑤 𝑡 = 𝛼  𝑒 ,

• 𝑤 𝑡
∗

= 𝛼∗ 𝑒

and, 

𝑔 𝑡 = 𝑤 𝑡 + 𝑤 𝑡
∗

• The figure shows that 𝑥(𝑡) is real valued and can be found as (see slide 2.B.3)

• Following 2.B.3
• 𝑤 𝑡 + 𝑤 𝑡

∗
= 2𝑅𝑒 𝑤 𝑡 .

• Following 4.A.2 

• 𝑅𝑒 𝑤 𝑡 = 𝛼 cos 2𝜋 𝑡 + ∠𝛼 .

• Two complex exponentials with complex conjugate weights sum up to yield a sinusoidal function!



Next, consider the superposition of four weighted complex exponentials such that these 
components constitute two complex conjugate pairs. In other words, if two components are 

selected as 𝑤1 𝑡 = 𝛼1 𝑒 𝑗2𝜋
1

𝑇
𝑡 and 𝑤2 𝑡 = 𝛼2𝑒

𝑗2𝜋
1

𝑇/2
𝑡
(with fundamental period 𝑇 and 𝑇/2), 

then the third and fourth component are their complex conjugates 𝑤1 𝑡
∗
=𝛼1

∗ 𝑒−𝑗2𝜋
1

𝑇
𝑡 and 

𝑤2 𝑡
∗

= 𝛼2
∗ 𝑒

−𝑗2𝜋
1

𝑇/2
𝑡
. Now let us consider 𝑤1 𝑡 +  𝑤1 𝑡

∗
. From slide 2.B.3, we know 

that this summation is twice the real part of 𝑤1 𝑡 (or equivalently, 𝑤1 𝑡
∗

). Therefore, we 
need to find 2𝑅𝑒{𝑤1 𝑡 }. The real part of 𝑤1 𝑡 is the first term on the right-hand side of the 
last equality below obtained after some rearrangements:

𝑤1 𝑡 = 𝛼1 𝑒 𝑗∠𝛼1𝑒 𝑗2𝜋
1

𝑇
𝑡

= 𝛼1 𝑒 𝑗(2𝜋
1

𝑇
𝑡+∠𝛼1)

= 𝛼1 cos 2𝜋
1

𝑇
𝑡 + ∠𝛼1 + 𝑗 𝛼1 sin 2𝜋

1

𝑇
𝑡 + ∠𝛼1

As a result, 2𝑅𝑒 𝑤1 𝑡 = 2 𝛼1 cos 2𝜋
1

𝑇
𝑡 + ∠𝛼1 .

The summation of the remaining terms are similarly 𝑤2 𝑡 +  𝑤2 𝑡
∗

= 2𝑅𝑒 𝑤2 𝑡 and 

one can similarly show that 2𝑅𝑒 𝑤2 𝑡 = 2 𝛼2 cos 2𝜋
1

𝑇
𝑡 + ∠𝛼2 .  The superposition of 

these four weighted complex exponentials is a real-valued signal that is periodic with T.

Note that by superposing more complex exponentials and varying their weights we can 
represent a wider variety of periodic signals. 
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4.A.7 Periodic Signals

𝑔 𝑡 = 2 𝛼 cos 2𝜋
1

𝑇
𝑡 + ∠𝛼 + 2 𝛼 cos 2𝜋

2

𝑇
𝑡 + ∠𝛼 .

Real

Imaginary

𝜶𝟏,𝑰𝒎

𝜶𝟏,𝑰𝒎 Period 𝑇

𝜶𝟐,𝑰𝒎

𝜶𝟐,𝑰𝒎

Period 𝑇/2

Period 𝑇/2

Period 𝑇

𝑤 𝑡 = 0 + 𝑤 𝑡 = 0

𝑤 𝑡 = 0
∗

+ 𝑤 𝑡 = 0
∗

• Now, let’s consider the superposition of four weighted 
complex exponentials such that they constitute two 
complex conjugate pairs, i.e. define 

• 𝑤 𝑡 = 𝛼  𝑒 ,

• 𝑤 𝑡 = 𝛼  𝑒 / .
and find 

𝑔 𝑡 = 𝑤 𝑡 + 𝑤 𝑡
∗

+ 𝑤 𝑡 + 𝑤 𝑡
∗
.

• The figure shows that 𝑥(𝑡) is real valued and can be found as (see slide 2.B.3)

• Following 2.B.3

• 𝑤 𝑡
∗

= 𝛼∗ 𝑒 ,

• 𝑤 𝑡
∗

= 𝛼∗ 𝑒 / ,

• 𝑤 𝑡 + 𝑤 𝑡
∗

= 2𝑅𝑒 𝑤 𝑡 .

• Following 4.A.2 

• 𝑅𝑒 𝑤 𝑡 = 𝛼 cos 2𝜋 𝑡 + ∠𝛼 .



Let us generalise the weighted sum of complex exponentials approach by using all integer 

multiples of the fundamental frequency 𝑓 =
1

𝑇
. This leads to the (infinite) series sum in (8) 

where 𝛼𝑛s are complex weights and 𝑒 𝑗2𝜋
𝑛

𝑇
𝑡

is a complex exponential with a fundamental period of 𝑇/𝑛. 

In this summation, there are as many complex exponentials as there are numbers in the 
set of integers 𝕀. All of the complex exponentials in the summation are periodic with 𝑇 and 
each has a fundamental period of 𝑇/𝑛 for n ≠ 0. Thus, half of the complex exponentials 
have positive frequencies (𝑓𝑛 = 𝑛/𝑇 for 𝑛 = 1,2, …) and half of the complex exponentials 
have negative frequencies (𝑓 = 𝑛/𝑇 for 𝑛 = −1, −2, …). The complex coefficients 𝛼𝑛 can be 
any (finite) complex number that yield a converging sum.

A very remarkable property of (8) is that all signals of practical interest with a fundamental 
period 𝑇 can be written as the right-hand side of (8); the equality holds when the 
coefficients are selected accordingly. In other words, by varying 𝛼𝑛s one can synthesise 
any signal of fundamental period 𝑇.

In fact, (8) is The Fourier Series Synthesis Equation named after Joseph Fourier who 
developed the idea of representing periodic functions with series of trigonometric functions 
in the early 19th century. In this context, the weights 𝛼𝑛 are referred to as The Fourier 
Series coefficients. 
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4.B.1 Fourier Series
• Let us generalise the weighted sum approach to an (infinite) number of complex exponentials in a weighted 

superposition to synthesise a signal: 

• The number of the complex exponentials: There are as many complex exponentials in (8) as there are numbers in 
the set of integers 𝕀.

• The periodicity of the complex exponentials: All complex exponentials are periodic with 𝑇 (with fundamental period 
𝑇/𝑛 for n ≠ 0). 
For n = 0, the complex exponential is a constant function.

• The frequency of the complex exponentials: The frequency of the nth complex exponential is 𝑓 = . 

Half of the complex exponentials have positive frequencies (𝑓 = 𝑛/𝑇 for 𝑛 = 1,2, …) and half of the complex 
exponentials have negative frequencies (𝑓 = 𝑛/𝑇 for 𝑛 = −1, −2, …). For n = 0 the frequency 𝑓 = 0 (indicating a 
constant function). 

• The weights of the complex exponentials: The complex coefficients 𝛼 can be any (finite) complex number that yield 
a converging sum.

• The equality in (8) is The Fourier Series Synthesis Formula named after Joseph Fourier and can represent all 
signals of practical interest with a fundamental period 𝑇. The weights 𝛼 are called The Fourier Series coefficients.

𝑔 𝑡 = 𝛼 𝑒 (8)



On this slide are two examples on how selection of different weights yield different signals: 

In the first example, the weights (or Fourier coefficients) are selected as 𝛼𝑛 =
sin

𝜋𝑛

2

𝜋𝑛
. These 

weights are real-valued, i.e. their imaginary part is zero. The Fourier Series Synthesis 
Equation in (8) results with a pulse train of fundamental period 𝑇 depicted in the top-right 
figure. This signal is real-valued and symmetric with respect to the vertical axis (i.e., it is an 

even signal). The pulse width is 
𝑇

4
+

𝑇

4
=

𝑇

2
.

When the weights are selected slightly differently as 𝛼𝑛 =
sin

𝜋𝑛

4

𝜋𝑛
, all properties of the 

synthesised signal using (8) remain the same except the pulse width. By changing the 

coefficients, we now have a pulse width of 
𝑇

8
+

𝑇

8
=

𝑇

4
.

In Fourier series, the 𝑛𝑡ℎ coefficient is associated with trigonometric functions of frequency 
𝑓𝑛 =

𝑛

𝑇
. Therefore, the left-hand side figures reveal the “frequency content” of the signals on 

the right-hand side. 

One remarkable point here is that discontinuous/sharply changing signals such as 
rectangular pulse trains are synthesised using weighted superpositions of smooth 
trigonometric functions (see also Section 4.A and Equation (6) ).

Radars and certain communication systems use pulse trains that are similar to the ones in 
these examples. 
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4.B.2 Fourier Series
• Example 1 (Example 3.5 in [1]): Choose the weights as 

follows: 

𝛼 =  , 𝛼 = 𝛼 = , … , 𝛼 = ,…

𝑻

𝟒
−

𝑻

𝟒

𝑇 2𝑇−𝑇−2𝑇

𝑔(𝑡)

𝑡

……

𝑻

𝟖
−

𝑻

𝟖

𝑇 2𝑇−𝑇−2𝑇

𝑔(𝑡)

𝑡

……

• Example 2 (Example 3.5 in [1]): Choose the weights as 
follows: 

𝛼 =  , 𝛼 = 𝛼 = , … , 𝛼 = ,…

Eq. (8) synthesise a pulse train with a 
fundamental period of T and pulse width of T/2. 

Eq. (8) synthesise a pulse train with a fundamental 
period of T and pulse width of T/4. 



Now, let us look at an example in which the imaginary parts of the Fourier Series 
coefficients are not all zero and as given in the top-left figure. The synthesised signal using 
Equation (8) is on the right-hand side: an asymmetric sawtooth which is real-valued, i.e. 
the imaginary part of the synthesised signal is zero for all 𝑡 = 0. The latter follows from that 
positive and negative indexed coefficients are complex conjugate pairs (see Section 
4.A.6), i.e. 𝛼𝑛 = 𝛼−𝑛

∗ . The fundamental period of this signal is 𝑇 = 3. Therefore, the 𝑛𝑡ℎ

coefficient weights trigonometric functions of frequency 𝑓𝑛 = 𝑛/3. This relation is explicitly 
shown on the left hand side figure by depicting the real and imaginary parts against the 
frequencies they are associated with. 

Although 𝑓𝑛 =
𝑛

3
for 𝑛 ∈ 𝕀 are marked on the horizontal axis, other frequency values are not 

part of the Fourier series, i.e. as far as a signal with period 𝑇 is concerned, terms with 
frequencies other than 𝑓𝑛 are not taken into account. This point is going to become more 
clear during the discussion on aperiodic signals and the Fourier Transform later in these 
notes.

For an animated Fourier Series demonstration, see 

https://www.youtube.com/watch?v=YUBe-ro89I4

For an audio demonstration, see 

https://www.youtube.com/watch?v=3IAMpH4xF9Q
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4.B.3 Fourier Series
• Example 3 (Problem 3.22 in [1]): Choose the 

weights as follows (with non-zero imaginary parts):
Eq. (8) synthesise an asymmetric sawtooth of 
fundamental period T=3: 

• Note that each 𝛼 is associated with frequency 𝑓 = 𝑛/𝑇 . The top-left figure has these 
frequencies along the horizontal axis replacing n to highlight the interchangeability. 

• Also note that the horizontal axis is discrete, i.e., frequencies other than 𝑓 are not elements of 
this axis – they are not accounted for. 



How can we find the coefficients to synthesise a signal 𝑔(𝑡) we are interested using The 
Fourier Series Synthesis Equation in Equation (8)? The answer is given by The Four 
Series Analysis Equation given in Equation (9): the nth Fourier coefficient equals the 
integration of the product of the nth complex exponential with 𝑔(𝑡) over a period of 𝑇
scaled by 𝑇.

Integration over a period means the lower and upper limits of the integration can be 
selected as any time instants separated exactly by 𝑇. For example, one can choose the 

lower limit as 0 and upper limit as 𝑇 and evaluate 𝛼𝑛 =
1

𝑇
∫ 𝑔 𝑡 𝑒−𝑗2𝜋

𝑛

𝑇
𝑡𝑑𝑡

𝑇

0
to find the Fourier 

coefficients of  𝑔 𝑡 . An equivalent alternative is to select the lower limit as –T/2 and the 

upper limit as T/2, i.e. evaluate 𝛼𝑛 =
1

𝑇
∫ 𝑔 𝑡 𝑒−𝑗2𝜋

𝑛

𝑇
𝑡𝑑𝑡

𝑇/2

−𝑇/2
. The main reason all such 

choices are equivalent is because both 𝑔 𝑡 and the nth complex exponential are periodic 
with 𝑇.

Equation (9) finds how much 𝑔 𝑡 contains the  nth complex exponential. Thus, we find the 
frequency content of 𝑔 𝑡 using the analysis formula in Equation (9) for all integers 𝑛 =
⋯ , −2, −1,0,1,2, … Almost all periodic functions/power functions of practical interest can be 
analysed using equations (9)

There are certain 𝑇 periodic functions, however, that cannot be analysed/synthesised 
using Equations (9) and (8). One example is depicted on the bottom right: This signal has 
an infinite number of discontinuities within each period of length 𝑇. Therefore, it is not a 
“nice” function as the pulse trains which had two discontinuities within a period. There are 
other examples in which one can define periodic functions that yields a divergent integral 
in (9), or a non-convergent sum in (8) for having infinitely many maximums/minimums or 
discontinuities within a period. Such signals do not admit Fourier Series representations 
and are out of the scope of our discussion.  
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4.B.4 Fourier Series
• The Fourier Series Analysis Formula gives the weights to use in (8) and synthesise a desired 

signal 𝑔(𝑡) with a fundamental period of 𝑇

• Here, the integration is carried out over any time interval of length 𝑇.

• In other words, ∫ 𝑑𝑡 = ∫ 𝑑𝑡 for some 𝜏 ∈ ℝ. For example, 𝜏 can be selected as 𝜏 = 0 or 

𝜏 = −𝑇/2. 
• The formula needs to be used for all 𝑛 = ⋯ , −2, −1,0,1,2, …  
• All 𝛼 must be finite to have a convergent sum in (8) (necessary but not sufficient condition). All 

“power signal” 𝑔 𝑡 that have “nice” behaviour yield convergent 𝛼 s in (8). 

𝛼 =
1

𝑇
𝑔 𝑡 𝑒 𝑑𝑡 (9)

T periodic functions

Power signals

Signals (8) synthesise . Source: Figure 3.8 [1].



As a summary, The Fourier Series representation of a well-behaving (“nice”) periodic 
signal 𝑔(𝑡) refers to: 1) A weighted sum of complex exponentials that is referred to as The 
Fourier Series Synthesis Formula and finds 𝑔(𝑡), and 2) The Fourier Series Analysis 
Formula to find the “Fourier coefficients” of 𝑔(𝑡) which are the weights of the complex 
exponentials in the synthesis formula. 

As a result, there are two equivalent representations of a signal with a fundamental period 
of 𝑇: the first is the so-called “time-domain representation” that consists of the graph of the 
function against time, or equivalently, an ordered list of time and function value pairs over a 
time interval of length T.  The second representation is given by the Fourier series 
coefficients, which reveal the contents of 𝑔(𝑡) in terms of complex exponentials. This 
representation is a “frequency-domain representation” as each complex exponential is 
associated with a frequency. All signals that can be analysed and synthesised using (9) 
and (8) admit these two characterisations: Given one, the other can be found using the 
relevant Fourier Series equation.

Pointers to further reading on the topic can be found in the last page.

There are some excellent online content explaining and visualising Fourier Series. One 
particularly nice one is here: https://www.youtube.com/watch?v=r6sGWTCMz2k
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4.B.5 Fourier Series

• A periodic power signal with period T (that also has “nice behaviour ”) 
has two equivalent representations: Its time domain representation (e.g. ordered 
pairs, its graph etc), and Fourier series coefficients. 

• As a summary, Fourier Series represent periodical signals through synthesis and analysis
formulae given in (8) and (9):

𝛼 =
1

𝑇
𝑔 𝑡 𝑒 𝑑𝑡𝑔 𝑡 = 𝛼 𝑒 ↔

Signals (8) synthesise 

.

𝑡 , 𝑔 𝑡  for 𝑡 ∈ [0, 𝑇) … , 𝛼 , 𝛼 , 𝛼 , 𝛼 ,   𝛼 ,    𝛼 ,   𝛼 , …

f (Hz)0 1

𝑇

2

𝑇

3

𝑇

−1

𝑇

−2

𝑇

−3

𝑇
Source: [1] Figure 1.14



Non-periodic signals are non-repetitive functions of time. In other words, there is no finite 𝑇
such that (4) can be true. Energy signals (see Section 3) are typical non-periodic signals 
as most of the time they are zero for all time values except a certain time interval. 

On the slide are examples of non-periodic signals: they take values of interest over 
[−𝑇1, 𝑇1] and are zero elsewhere. One can construct periodic counterparts from them by 
shifting them around integer multiples of 𝑇 > 2𝑇1, i.e. … , −3𝑇, −2𝑇, −𝑇, 0, 𝑇, 2𝑇, 3𝑇.

We can view non-periodic signals as the limit of their 𝑇 periodic counterparts 𝑔𝑇(𝑡) as 𝑇 is 
increased towards infinity. This view will be very useful when extending Fourier Series 
analysis and synthesis formulae to non-periodic signals.

Page 25

• Non-periodic signals are non-repetitive functions of time. 
• We are mainly interested in non-periodic energy signals (see Sec. 3). 
• Below are examples of non-periodic functions and associated 𝑇 periodic functions obtained by 

replicating them around integer multiples of 𝑇 :

𝑔 (𝑡)𝑔(𝑡)

𝑔(𝑡) 𝑔 (𝑡)

• Non-periodic energy signals on the left hand side can be viewed as the limit of their 
𝑇-periodic counterpart as 𝑇 tends to infinity. 

S
ou

rc
e:

 F
ig

ur
e 

4.
3 

in
 [

1]
.

Non-periodic signals 𝑇 periodic counterparts

lim
→

𝑔 𝑡 → 𝑔(𝑡)

𝑇−𝑇

5.A.1 Non-periodic Signals



Is it possible to decompose non-periodic signals as a superposition of weighted complex 
exponentials in a way similar to using Fourier series for periodic signals to reveal their “contents”? 
You might guess that the answer is yes. To see this, let us begin with the periodic counterpart 
𝑔𝑇 𝑡 of a non-periodic signal 𝑔 𝑡 and consider The Fourier Series synthesis and analysis 
equations (8) and (9), respectively, applied for the counterpart. 

Now:

Substitute the left-hand side of the analysis equation in place of the Fourier coefficient 𝛼𝑛 in the 
synthesis equation. 

The equation from the first step involves an integration over one period 𝑇 which can be selected as 

the interval −
𝑇

2
,

𝑇

2
, for example. Now, let’s replace this integral with a slightly different one which 

evaluates exactly the same at the harmonic frequencies of the series, i.e. 𝑓𝑛 =
𝑛

𝑇
. As a replacement, 

let’s use the non-periodic counterpart of 𝑔𝑇 𝑡 , i.e. 𝑔 𝑡 , as the integrand and select the integration 
interval as the entire real line, i.e. (−∞, ∞). Also introduce a free variable 𝑓 which can take any 
value and not only integer multiples of 1/𝑇. This newly defined function is in (10) and results with 
the same output as the integral inside the parentheses when evaluated at   𝑓 = 𝑓𝑛 for all n; it can 
also map frequency values that are not integer multiples of 1/𝑇 (i.e. maps any 𝑓 ≠ 𝑓𝑛 to a complex 
number).

As a result, the rearranged equation features the periodic signal 𝑔𝑇 𝑡 on the left-hand side and a 
Reimann sum on the right hand side*. The step-size in the Reimann sum is 1/𝑇 and the function 
that is evaluated with 1/𝑇 steps is 𝐺 𝑓 𝑒 𝑗2𝜋𝑓𝑡. Therefore, as 𝑇 tends to infinity, the left hand side 
approaches to the non-periodic signal  𝑔 𝑡 , and the right-hand side approaches to the integral in 
(11). 

The equations (10) and (11) are the Fourier Transform analysis and synthesis equations, 
respectively. Both 𝑔 𝑡 and 𝐺 𝑓 are complex functions of their real-valued arguments, in general 
(i.e. 𝑔: ℝ → ℂ and 𝐺: ℝ → ℂ).

* See your engineering mathematics text book and lecture notes for Reimann sums or 
https://en.wikipedia.org/wiki/Riemann_sum
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• The Fourier Transform reveals the weighted complex exponentials constituting a non-periodic signal 
in a similar way that The Fourier Series reveal it for periodic signals. 

• Let us first consider The Fourier Series analysis and synthesis equations together:

• The right hand side is a Reimann sum and as 𝑇 tends to infinity Δ𝑓 → 𝑑𝑓, 
∑ . Δf → ∫ . 𝑑𝑓 and we get:  

𝑔 𝑡 = 𝛼 𝑒

𝑔 𝑡 =
1

𝑇
𝑔 𝑡′ 𝑒 𝑑𝑡′ 𝑒 .

𝐺(𝑓) = 𝑔 𝑡′ 𝑒 𝑑𝑡′

𝑔 𝑡 = 𝐺 𝑓 𝑒 Δ𝑓 , where Δ𝑓 = 𝑓 − 𝑓 = .

𝑔 𝑡 = 𝐺 𝑓 𝑒 𝑑𝑓 .

𝛼 =
1

𝑇
𝑔 𝑡 𝑒 𝑑𝑡 .where

(10)

(11)

1. Substitute the latter in the former:

2. Define a function for a continuous frequency 𝑓 as
which equals to the term inside the parenthesis 
when evaluated at 𝑓 =  . So, 

5.B.1 The Fourier Transform



Let us demonstrate how increasing 𝑇 leads to more densely located terms on the 
frequency axis, and how the Fourier Series coefficients weighted with 𝑇 are samples taken 
from the same function. This is because as  𝑇 increases, the 1/𝑇 steps in-between the 
frequency terms become smaller and smaller. 

As an example, we consider the pulse train in 4.B.2. That example demonstrated how 
changing the pulse-width vary the Fourier series coefficients. Here, we fix the pulse width 
to ½ and change the period 𝑇. 

Specifically, we increase the period as 𝑇 = 1,4,8,32 and 𝑇 = 256. The resulting  coefficients 
(weighted by 𝑇 to remove the scaling in equation (9)) vs the frequency terms are given on 
the right hand side starting from the top. For 𝑇 = 1, the frequency terms are 0, ±1, ±2, … . 

For 𝑇 = 4, the frequency terms are now at 0, ±
1

4
, ±

2

4
, ±

3

4
, 1, ±

5

4
, … For 𝑇 = 32, the 

frequency terms are already dense enough to have a plot that appears as continuous. For 
𝑇 = 256 the plot is more smooth and appears more similar to a continuous function’s 
graph: The resolution is now so high that the “dots” appear as a continuous curve. 

The function whose graph is the envelope of all of the plots here is nothing but 𝐺(𝑓), i.e. 
the Fourier Transform of the non-periodic counterpart of 𝑔𝑇(𝑡). In the limit of 𝑇 tending to 
infinity, we will have coverage of the entire “spectrum” of frequencies and the graph of the 
function 𝐺(𝑓) and the periodic function 𝑔𝑇(𝑡) will have become a non-periodic one. This 
limit case is the Fourier Transform. 
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5.B.2 The Fourier Transform
• Example 4: Consider the pulse train example in Section 4.B.2. 

𝟏

𝟒
−

𝟏

𝟒

𝑇 2𝑇−𝑇−2𝑇

𝑔 (𝑡)

𝑡

……

T
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n }
 

T
 

 R
e

{ 
n }

 
T

 
 R

e
{ 

n }
 

T
 

 R
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n
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• On the right hand side are The Fourier Series 
Coefficients  𝛼 vs 𝑓 = demonstrating how as 𝑇

grows, 𝑓 s becomes denser and  𝑇 × 𝛼 tend to form a 
continuous function of the frequency 𝑓 given in (10): 

from top to bottom 
𝑇 = 1,4,8,32 and 𝑇 = 256.



Thus, for a well-behaving (“nice”) non-periodic signal: 1) The Fourier Transform Synthesis 
Formula (left) expresses 𝑔(𝑡) as an infinite sum of weighted complex exponentials over a 
continuum of frequencies, and 2) The Fourier Transform Synthesis Formula (top-right) 
finds the “Fourier Transform” (or spectrum) of 𝑔(𝑡), which is a complex function of a 
continuous frequency variable denoted by 𝐺(𝑓), and weights the complex exponentials in 
the synthesis formula together with the infinitesimal 𝑑𝑓. In other words, the synthesis 
equation can be viewed as 𝑔 𝑡 = ∫ 𝐺 𝑓 𝑑𝑓  𝑒 𝑗2𝜋𝑓𝑡∞

−∞
where the term inside the 

parentheses is the weight of the complex exponential 𝑒 𝑗2𝜋𝑓𝑡 in an infinite sum.

As a result, there are two equivalent representations of a non-periodic signal revealed by 
the Fourier Transform: the first is the so-called “time-domain representation” that consists 
of the graph of the function against time, or equivalently, an ordered list of time and 
function value pairs over the real valued time axis. The second representation is given by 
the Fourier Transform, which reveal the contents of 𝑔(𝑡) in terms of complex exponentials 
in a way similar to the Fourier Series reveal the same for periodic signals. Also called the 
“spectrum” or “the frequency-domain representation” of 𝑔(𝑡), 𝐺(𝑓) maps a real valued 
frequency 𝑓 to a complex number. All signals that can be analysed and synthesised using 
(10) and (11) admit these two characterisations: Given one, the other can be found using 
the relevant Fourier Transform equation.

Pointers to further reading on the topic can be found on the last page.

All energy functions have Fourier Transforms. Some periodic signals such as the complex 
exponential and trigonometric signals also admit Fourier Transforms which is going to be 
discussed later.

There are some excellent online content explaining and visualising the Fourier Transform. 
One particularly nice one is here: https://www.youtube.com/watch?v=spUNpyF58BY
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5.B.3 The Fourier Transform
• The Fourier Transform Synthesis and Analysis equations are as follows: 

𝐺(𝑓) = 𝑔 𝑡 𝑒 𝑑𝑡↔𝑔 𝑡 = 𝐺(𝑓)𝑒 𝑑𝑓

• A non-periodic energy signal (that also has “nice behaviour” ) has two equivalent representations: Its time 
domain representation (e.g. ordered pairs, its graph etc), and its Fourier Transform. 

Signals (11) synthesise 

𝑡, 𝑔 𝑡  for 𝑡 ∈ ℝ

• 𝐺(𝑓) is called the Fourier Transform of 𝑔 𝑡 or its spectrum; 𝑔 𝑡 and 𝐺(𝑓) constitute a Fourier Transform 
pair.

• Some periodic signals such as the complex exponential and trigonometric signals also admit Fourier 
Transforms.

𝑓, 𝐺 𝑓  for 𝑓 ∈ ℝ



The Fourier Transform of a signal 𝐺(𝑓) is also referred to as its spectrum. As 𝐺(𝑓) is a 
complex number corresponding to 𝑓, so one can plot the graph of its real and imaginary 
parts versus frequency. Also, 𝐺(𝑓) has an absolute value (or magnitude, or amplitude) and 
a phase in its polar form (see Section 2.B.2). Therefore, one can plot its magnitude and 
the phase angle against frequency. The first plot is called the amplitude spectrum and the 
second plot is called the phase spectrum of 𝑔(𝑡). 

As an example, let us consider the non-periodic counterpart of the sawtooth signal in 
Section 4.B.3. This is a real valued signal in the form of an asymmetric triangle as depicted 
on the left-hand side. This is clearly an energy signal. The magnitude and phase spectrum 
of this signal obtained by first finding its Fourier Transform 𝐺(𝑓) and  then finding the 
absolute value and the angle of 𝐺(𝑓) are depicted on the right-hand side. Note that the 
frequency terms above 1 Hz and below −1 Hz have very small magnitudes.
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5.B.4 The Fourier Transform
• Given spectrum 𝐺(𝑓), its absolute value is called the amplitude spectrum and its phase is called 

the phase spectrum.

• Example 5: Consider the non-periodic counterpart 
of the sawtooth function in Example 3:

Eq. (10) finds the spectrum 𝐺(𝑓) depicted as 
amplitude and phase spectrums:

𝐺(𝑓) = 𝐺 𝑓 𝑒∠ ( )

Amplitude Spectrum
Phase Spectrum



Not only energy signals have Fourier Transforms. For example, complex exponentials are 
power signals (see Section 4.A.1), and they do admit Fourier transforms. However, we 
need to slightly extend our mathematical vocabulary for this and introduce Dirac’s delta 
function. This function has been very useful in almost all engineering fields including 
mechanical engineering, control engineering, radar engineering, telecommunications 
engineering etc. 

Briefly, Dirac’s delta function is an impulse: A pulse with an infinitesimally small duration 
and unit area. This can be viewed as the limit case of shrinking a pulse of with 𝜖 and 
height 1/𝜖 by taking 𝜖 towards zero. The resulting function is denoted by 𝛿(𝑥) and is zero 
everywhere except when its argument 𝑥 takes the value zero. For 𝑥 = 0, the function has 
to output infinity (i.e. ∞) to maintain the unit area. On the other hand, because ∞ is not a 
real number, 𝛿(𝑥) is not a real-valued function.

Nevertheless, it can be characterised by its properties. First, because Dirac’s delta has an 
area of one, its integral over the real line is one. Second, the impulse can be shifted on the 
real line to an arbitrary position 𝑎 by simply subtraction 𝑎 from its argument. The 
integration of any signal with a shifted impulse equals to the function in the integrand 
evaluated at the impulse’s location, i.e., 𝑔(𝑎). 

Dirac’s delta function will be very useful in defining the Fourier Transforms of the complex 
exponential and trigonometric functions.  

For further visualisations, see  https://www.youtube.com/watch?v=SxNVcCVj-3c
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5.B.5 The Fourier Transform
• The Fourier Transform of the complex exponential and trigonometric functions involve Dirac’s delta function.
• Dirac’s delta function is very useful in the study of all engineering fields including signals & systems. It is a 

pulse with unit area and infinitesimally short duration, i.e. an impulse:

Area 
= 1

𝑥

1

𝜖

𝜖/2−𝜖/2 0

𝑝 𝑥 =
1

𝜖
, 𝑥 ∈ (−

𝜖

2
,
𝜖

2
) 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Pulse of area one and width 𝜖

𝜖 → 0 
Area = 1

𝑥
0

𝛿 𝑥 =
∞, 𝑥 = 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Dirac’s delta function 

• Properties of Dirac’s delta function are:
1) Because Area=1, ∫ 𝛿 𝑥 𝑑𝑥 = 1.
2) Given any function 𝑔(𝑥), 

𝑔(𝑥)𝛿 𝑥 − 𝑎 𝑑𝑥 = 𝑔(𝑎)𝛿 𝑥 − 𝑎 𝑑𝑥 = 𝑔(𝑎) 𝑥
0 𝑎

𝛿 𝑥 − 𝑎
𝑔(𝑥)



The Fourier Transform of the complex exponential signal with frequency 𝑓𝑚 is an impulse 
over the frequency axis shifted to 𝑓𝑚. In other words, 𝐺 𝑓 = 𝛿(𝑓 − 𝑓𝑚) and 𝑠 𝑡 = 𝑒 𝑗2𝜋𝑓𝑚𝑡

form a Fourier Transform pair. 

In order to verify this, let us find the signal that gets synthesised using the proposed 
spectrum in the Fourier Transform synthesis formula. Call this signal 𝑔 𝑡 , then, using the 
second property of the Dirac delta function in Section 5.B.5

𝑔 𝑡 = ∫ 𝛿 𝑓 − 𝑓𝑚 𝑒 𝑗2𝜋𝑓𝑡𝑑𝑓
∞

−∞

𝑔 𝑡 = 𝑒 𝑗2𝜋𝑓𝑚𝑡

which is the complex exponential with frequency 𝑓𝑐 proving that 𝐺 𝑓 = 𝛿(𝑓 − 𝑓𝑚) is its 
Fourier Transform.

Note that the evaluation of the Fourier Transform analysis formula for a complex 
exponential is not trivial. This is left out of the scope of this module.
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5.B.6 The Fourier Transform
1. Impulse in the frequency domain 𝐺 𝑓 = 𝛿(𝑓 − 𝑓 ) is the Fourier Transform of 

the complex exponential 𝑠 𝑡 = 𝑒 ((5) with frequency 𝑓 ):

𝐺 𝑓 = 𝛿(𝑓 − 𝑓 )↔𝑔 𝑡 = 𝛿(𝑓 − 𝑓 )𝑒 𝑑𝑓

𝑓
0 𝑓

𝛿 𝑓 − 𝑓

𝐺(𝑓)

𝐺 𝑓 = 𝛿(𝑓 − 𝑓 )↔𝑔 𝑡 = 𝑒

= 𝑒 Dirac’s delta, property #2

 
−

1

𝑓  
−

𝑓

𝑅
𝑒

{𝑔
(𝑡

)}
𝐼𝑚

{𝑔
(𝑡

)}



The Fourier Transform of the trigonometric function cos(2𝜋𝑓𝑚𝑡) consists of two impulse 
over the frequency axis shifted to 𝑓𝑚 and −𝑓𝑚. In other words, 𝐺 𝑓 = 0.5 𝛿 𝑓 − 𝑓𝑚 +
0.5 𝛿(𝑓 + 𝑓𝑚) and s t = cos(2𝜋𝑓𝑚𝑡) form a Fourier Transform pair. 

This can be verified by simply substituting the proposed spectrum in the Fourier Transform 
synthesis formula and using the second property of the Dirac delta function in Section 
5.B.5 as follows: let’s denote the function that will be synthesised 𝑔(𝑡). Therefore, 

𝑔 𝑡 = ∫ 0.5 𝛿 𝑓 − 𝑓𝑚 + 0.5 𝛿(𝑓 + 𝑓𝑚) 𝑒 𝑗2𝜋𝑓𝑡𝑑𝑓
∞

−∞

𝑔 𝑡 = 0.5 ∫ 𝛿 𝑓 − 𝑓𝑚 𝑒 𝑗2𝜋𝑓𝑡𝑑𝑓
∞

−∞
+0.5 ∫ 𝛿 𝑓 + 𝑓𝑚 𝑒 𝑗2𝜋𝑓𝑡𝑑𝑓

∞

−∞

𝑔 𝑡 = 0.5𝑒 𝑗2𝜋𝑓𝑚𝑡 + 0.5𝑒 𝑗2𝜋(−𝑓𝑚)𝑡

Now, use the Euler’s formula (1) and expand the complex exponentials above:

𝑔 𝑡 = 0.5 cos 2𝜋𝑓𝑚𝑡 + 𝑗0.5𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡) + 0.5 cos −2𝜋𝑓𝑚𝑡 + 𝑗0.5𝑠𝑖𝑛(−2𝜋𝑓𝑚𝑡)

The cosine is an even function and sine is an odd function (see Section 2.A.2)

𝑔 𝑡 = 0.5cos 2𝜋𝑓𝑚𝑡 + 0.5cos 2𝜋𝑓𝑚𝑡 +j0.5𝑠𝑖𝑛 2𝜋𝑓𝑚𝑡 − 𝑗0.5𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡)

𝑔 𝑡 = cos 2𝜋𝑓𝑚𝑡 . 

Similar to the complex exponential case, the evaluation of the Fourier Transform analysis 
formula for a sinusoidal signal is non-trivial and left out of the scope of this module.
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5.B.7 The Fourier Transform
2. The trigonometric function cosine as a function of time with frequency 𝑓 , i.e. 𝑠 𝑡 = cos(2𝜋𝑓 𝑡), 

has a Fourier Transform that consists of two impulses: one located at 𝑓 and the second located 
at −𝑓 (see, also 4.A.6).

 
−

1

𝑓  
−

𝑓

𝑅
𝑒

{𝑔
(𝑡

)}
𝐼𝑚

{𝑔
(𝑡

)}
𝐺 𝑓 =

1

2
𝛿 𝑓 + 𝑓 +

1

2
𝛿 𝑓 − 𝑓↔𝑔(𝑡) =

1

2
𝛿 𝑓 − 𝑓 +

1

2
𝛿(𝑓 + 𝑓 ) 𝑒 𝑑𝑓

𝑓
0 𝑓

1

2
𝛿 𝑓 − 𝑓

𝐺(𝑓)

−𝑓

1

2
𝛿 𝑓 + 𝑓

𝐺 𝑓 =
1

2
𝛿 𝑓 + 𝑓 +

1

2
𝛿 𝑓 − 𝑓↔𝑔 𝑡 = cos(2𝜋𝑓 𝑡)

=
1

2
𝛿 𝑓 − 𝑓 𝑒 𝑑𝑓 +

1

2
𝛿 𝑓 + 𝑓 𝑒 𝑑𝑓

=
1

2
𝑒 +

1

2
𝑒 ( )

= cos(2𝜋𝑓 𝑡)

Dirac’s delta, property #2



An impulse signal in the time-domain 𝛿(𝑡) has a flat spectrum: In other words, if one adds 
up all complex exponentials of all frequency by weighting them with 𝑑𝑓, the end result is 
zero everywhere except the origin and tends to ∞ at the origin. This can be verified by 
simply substituting 𝛿 𝑡 in the Fourier Transform analysis formula and using the second 
property of the Dirac delta function in Section 5.B.5 as follows: 

𝐺 𝑓 = ∫ 𝛿 𝑡 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
,

 = 𝑒−𝑗2𝜋𝑓𝑡
𝑡=0

,

           = 1.

This spectrum is of unity magnitude and zero phase, i.e., the angle ∠𝐺(𝑓) for all 𝑓 is zero. 
If the impulse is shifted in time to 𝑇, the corresponding spectrum still is flat in its 
magnitude, but linear in its phase:

𝐺 𝑓 = 𝛿 𝑡 − 𝑇 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

,

= 𝑒−𝑗2𝜋𝑓𝑡
𝑡=𝑇

  ,

           = 𝑒−𝑗2𝜋𝑓𝑇.

Therefore, the absolute value of 𝐺(𝑓) is still unity, but the phase ∠𝐺(𝑓) is now linear with 
𝑓. In particular, the slope of the linear phase is determined by the time shift as −2𝜋𝑇.
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5.B.8 The Fourier Transform
3. Impulse in the time-domain 𝑔 𝑡 = 𝛿(𝑥) has an all-one “flat” spectrum:

A shift in the time-domain corresponds to a linear phase ∠𝐺(𝑓):

𝐺 𝑓 = 1↔𝑔 𝑡  = 𝛿(𝑡) 𝐺(𝑓)

𝑓
0

1

𝑡
0

𝛿 𝑡

𝐺 𝑓 = 𝑒↔𝑔 𝑡  = 𝛿(𝑡 − 𝑇) |𝐺 𝑓 |

𝑓
0

1

∠𝐺 𝑓

𝑓0
1

−2𝜋𝑇

𝑡
0

𝛿 𝑡 − 𝑇

𝑇



The dictionary definition of a system on the slide refers to interaction of components each 
of which perform a certain process to transform inputs to the process to the outputs. In this 
module, we are interested in an analytical definition: A system is a function which maps 
input signals to output signals. In other words, a system is a transformation that outputs a 
specific signal in response to a specific input. For example, on the bottom-right is a Venn-
diagram representation of a system 𝑆 which maps the signal set 𝒳 onto another signal set 
𝒴, i.e. 𝑆: 𝒳 → 𝒴 (see, also Section 1.B.1 for comparison).

One might list the input-output signal pairs to represent the system 𝑆 as a list. Alternatively, 
the output to a specific signal, say 𝑎 𝑡 can be written using the regular function notation 
𝑘 = 𝑆(𝑎), which reads “𝑘 equals to 𝑆 of 𝑎.” Note that 𝑆 is NOT a composite function; it 
maps the signal 𝑎 in the set of signals  𝒳 to another function 𝑘 which is an element of 𝒴. 
Both signals 𝑎 and 𝑘 maps time value 𝑡 to a real or complex number. 

More complex systems can be viewed as interconnections of such systems. For example, 
an aircraft control system is an interconnection of several systems [2]; the aircraft as a 
system is described by its equations of motion and aerodynamic forces mapping control 
surfaces, engine thrust and other inputs to rotation rates and other relevant kinematic 
quantities. This system is connected to the sensors, which measure various quantities 
including the heading and accelerations. An autopilot is a system which maps commands 
from the pilot such as the desired course, altitude, and speed, and the sensor 
measurements to actuators associated with the control surfaces (e.g. rudder, tail and 
ailerons). 
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6.A.1 Systems: Definition
• Dictionary definition

system (n) a construct or collection of different elements that together 

produce results not obtainable by the elements alone. The elements, or parts, 

can include people, hardware, software, facilities, policies, and documents; 

that is, all things required to produce systems-level results. 

• Analytical (mathematical) definition

system (n) a function that maps an input signal to an output signal. 

• A system produces an output signal in response to an 
input signal.

• On the right-hand side is a system 
𝑆: 𝒳 → 𝒴 whose input-output pairs are 
𝑆 = { 𝑎(𝑡), 𝑚(𝑡) , 𝑏(𝑡), 𝑘(𝑡) , 𝑐(𝑡), 𝑘(𝑡) }.

• For example, in response to the input 𝑎 𝑡 , the 
system 𝑆 outputs 𝑚(𝑡) which is written 
𝑚 = 𝑆 𝑎 .

• More complex systems are built by interconnecting 
systems.

. a(𝑡)

. 𝑏(𝑡)

. 𝑐(𝑡)

. 𝑘(𝑡)

. 𝑙(𝑡)

. 𝑚(𝑡)

𝒳 𝒴

System
outputinput



Let us start with a simple example and consider an amplifier system: the input signal is 
multiplied with a gain factor of 𝐾 which is much larger than 1 (for example, 𝐾 might equal 
to 10 or 100). This is denoted by ≫ and reads “much larger than”. One can show using 
the power formula in Section 3 that multiplication by 𝐾 results by increasing the energy or 
power of a signal by 𝐾2.

As an example, let us consider a cosine signal at the input that has a period of 𝑇. The 
graph of this signal is given on the left hand side. The system transform it to a cosine with 
the same period (and frequency 𝑓 = 1/𝑇), but higher amplitude. The amplitude of 1 at the 
input means the output cosine’s amplitude is 𝐾. 
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6.B.1 Examples
1. An amplifier multiplies the input signal with a gain factor much larger than 1, i.e. 𝐾 ≫ 1).

Example 6: Suppose 𝑔 𝑡 = cos (2𝜋 𝑡), then, the output is 𝐾 cos 2𝜋 𝑡 :

gain 𝐾
𝐾𝑔(𝑡)𝑔(𝑡)

𝑡0
𝑇 2𝑇 3𝑇 4𝑇−𝑇−2𝑇−3𝑇−4𝑇

𝟏

𝑡𝑇 2𝑇 3𝑇 4𝑇−𝑇−2𝑇−3𝑇−4𝑇 0

𝐾
gain 𝐾



Now consider an attenuator system: the input is mapped to a version of itself that is 
multiplied with a number less than one (but greater than zero). Here, the attenuation factor 
𝑎 might be 0.1 or 0.01. Note that because 0 < 𝑎 < 1, 0 < 𝑎2 < 𝑎 and the output 
power/energy signal will be the input with much less power/energy (see, Section 3). For 
example, if 𝑎 = 0.1, the output will be the input signal with 1/100 of its power/energy. 

If a cosine is input to the attenuator, the output will be a cosine with the same period 𝑇
(and frequency 𝑓 = 1/𝑇). The amplitude at the output, however, will be 𝛼. 
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6.B.2 Examples
2. An attenuator multiplies the input signal with a gain factor that is a small number 

between 0 < 𝑎 < 1:

Example 7: Suppose 𝑔 𝑡 = cos (2𝜋 𝑡), then, the output is 𝑎cos (2𝜋 𝑡): 

attenuation 𝑎
𝑎𝑔(𝑡)𝑔(𝑡)

𝑡0
𝑇 2𝑇 3𝑇 4𝑇−𝑇−2𝑇−3𝑇−4𝑇

𝒂

𝑡𝑇 2𝑇 3𝑇 4𝑇−𝑇−2𝑇−3𝑇−4𝑇 0

1 attenuation 𝑎



In this example, we consider a phase shifter system: The input’s phase is shifted by 𝜙
radians to produce the output. For example, if the input is a cosine of period 𝑇 (and, 
frequency 𝑓 = 1/𝑇), the output will be a cosine of the same period (and, frequency) but 
with phase 𝜙. Therefore, the input signal with zero phase is 1 at 𝑡 = 0 and the output is 
cos(−𝜙) at 𝑡 = 0.
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6.B.3 Examples
3. A phase shifter adds phase to the input signal:

Example 8: Suppose 𝑔 𝑡 = cos (2𝜋 𝑡), then, the output is cos (2𝜋 𝑡 − 𝜙): 

Phase shifter 𝜙
𝐾𝑔(𝑡)𝑔(𝑡)

𝑡
𝑇 2𝑇 3𝑇−𝑇−2𝑇−3𝑇 0

1

𝑡
𝑇 2𝑇 3𝑇−𝑇−2𝑇−3𝑇 0

cos (−𝜙)

Phase shifter 𝜙



Many systems are interconnections of simpler systems as explained in Section 6.A.1. The 
first interconnection type is a series (or cascade) interconnection: the input  to the cascade 
is transformed to an output by the first system on the left, which then becomes the input to 
the second system (denoted by input2). The output of the overall cascade is the response 
of the second system to the output of the first one (i.e. input2) for the selected input. 

The second fundamental interconnection type is the parallel connection. In this case, the 
input to the parallel systems is the same. The output of the interconnection is the 
summation of all of the outputs of the parallelly connected systems.
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6.C.1 Interconnections

1. A series (cascade) interconnection 

System 2

output 𝑡 =
output1 𝑡 +output2(𝑡)

2. A parallel interconnection 

System 1

input(𝑡)

output1(𝑡)

output2(𝑡)

System 1
input2(𝑡)input(𝑡)

System 2
output(𝑡)



More complex systems are built by using a mix of series and parallel connections. An 
example is on the top of slide: there is a parallel interconnection the first branch of which 
consists of two systems in series, i.e. system 1 and system 2. The second branch of the 
parallel connection is system 3. The parallel interconnection is in series to system 4. 
Hence, system 4 produces the final output in response to the summation of the outputs 
from system 2 and 3. System 3 produces its output in response to input(t). System 2 
produces its output in response to the output of system 1 which in turn maps input(𝑡) to its 
output.  

The last interconnection example on the slide is the “feedback” interconnection, which is 
commonly used in control systems such as the fly-by-wire and autopilot. Here, the final 
output of the interconnection is connected back to the input via a feedback path. This 
allows control systems to compare the output and the input of the system; the input is 
often the desired outcome which can be, for example, the desired altitude or the heading 
angle etc. The difference of the input and the feedback is the error the overall output has 
with respect to the desired input. System 1 converts this error signal to a control signal to 
System 2. System 2 represents the system that is controlled and produces an output in 
response to the control system. System 3 converts this output to a compatible signal to the 
input, for comparison. This loop continues in every “split second” or, mathematically, with 
infinitesimal time steps. Note that if the feedback equals to the desired input, then there 
will be zero input to the System 1 indicating that no change in the overall output of the 
system is required.
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BONUS

6.C.2 Interconnections

System 2
output 𝑡

System 1

input(𝑡)

System 3

System 4

3. A mixed series/parallel interconnection 

4. A                             interconnection 

System 2
output 𝑡

System 1
input(𝑡)

System 3

−
+

feedback(𝑡)



There are three blocks which are very common in the study of communication systems 
and avionics. The first is a “source” block and called the sinusoidal wave generator or an 
oscillator. The output of this block is a cosine signal at frequency 𝑓. Sometimes, a sine 
wave is needed; a phase shifter in serial connection to a cosine oscillator outputs a sine 
wave because sin 𝑥 = cos(𝑥 − 𝜋/2) (see, Section 2.A.2). 

The second common block is the multiplicator –which complements the addition block in 
parallel connections. The output of a multiplicator is the product of its inputs which on the 
slide are  input1(𝑡) and input2(𝑡). 

One of the most important blocks in communication systems and avionics is the 
modulator: This system multiplies its input with a cosine signal, i.e. the output is the 
product of the input with a cosine at frequency 𝑓. Note that some modulators might use a 
sine signal. In this module, the trigonometric function related to a modulator will be stated 
explicitly.
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6.C.3 Interconnections
The most common blocks in avionics and communication systems are

input2(𝑡)

input1(𝑡) output 𝑡 = 
input1 𝑡 × input2(𝑡)

1. Sinusoidal wave generator aka oscillator: cos(2𝜋𝑓𝑡)

E.g.

input(𝑡) output 𝑡 = 
input 𝑡 × cos(2𝜋𝑓𝑡)

cos(2𝜋𝑓𝑡)

Phase shifter 90∘cos(2𝜋𝑓𝑡) sin(2𝜋𝑓𝑡)

2. The multiplicator:

3. The modulator:



Systems come with an unlimited variety of ways to map input signals to output signals. 
Therefore, it is useful to classify them to identify the ones that exhibit useful patterns of 
behaviour. 

One such useful class consists of systems which are both linear and time-invariant. 

Let us make a narrative jump and before introducing what makes a system linear or time-
invariant, let us state what makes them important, first. 

The first important property of LTI systems is that their response to a complex exponential 
(see, Section 4.A.1) is a weighted version of the same complex exponential with a 
complex number. Therefore, the output will be a complex coefficient with the same 
frequency. The magnitude and the phase of the output will be specified by the complex 
weight the system uses to transform the input.  On the slide, a complex exponential of 
frequency 𝑓 is input to an LTI system which weights it with a complex number ℎ𝑓. 

Therefore, the output has a magnitude of ℎ𝑓 and phase of ∠ℎ𝑓. The subscript 𝑓 means 
that this coefficient is frequency dependant, i.e. for two different frequencies 𝑓1 and 𝑓2, the 
system will multiply the complex exponentials by ℎ𝑓1

and ℎ𝑓2
, respectively. 

The second important property of LTI systems is that their response to a sum of weighted 
complex exponentials will be the sum of responses to individual components of the input. 
This property will be very useful in characterising LTI systems and establishing their 
input/output mapping rules because all signals can be written as a sum of complex 
exponentials as revealed by our discussion on Fourier series and the Fourier transform.
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7.1 Linear Time-Invariant Systems

• An important class of systems in avionics and communication systems is the linear
and time-invariant (LTI) systems.

• (Narrative Jump)
- Why LTI systems are important? 
- Because the response of an LTI system to any complex exponential is a complex 
exponential at the same frequency weighted with a system specific complex 
number.

LTI System
ℎ = ℎ 𝑒 ∠

𝑦 𝑡 = ℎ 𝑒

                       = |ℎ | 𝑒 ∠
𝑔 𝑡 = 𝑒

- Moreover, the output to a sum of weighted complex exponentials is a superposition 
of same terms scaled with system specific complex numbers.

LTI System
ℎ = ℎ 𝑒 ∠

𝑦 𝑡 = ℎ g 𝑒

+ℎ g 𝑒

                 + ⋯

𝑔 𝑡 = g 𝑒
+g 𝑒

+ ⋯



Suppose that we have an unknown system called System X, and we know that it produces 
output1(𝑡) in response to input1(𝑡) and output2(𝑡) in response to input2(𝑡). There are two 
conditions to test to see if System X is linear:

Choose a complex number 𝑎 ∈ ℂ and multiply the input with this number to have a scaled 
input signal. If the output scales exactly with 𝑎, i.e. System X yields 𝑎 × output1 𝑡 in 
response to 𝑎 × input1 𝑡 , and does so for every possible 𝑎, then System X passes the 
first test of linearity. 

Now add the two test inputs input1(𝑡) and input2(𝑡) together to drive the system. If the 
output is the summation of output1(𝑡) and output2(𝑡), System X passes the second test of 
linearity.  

A system is linear if the above two conditions hold. 

Note that these conditions ascertain that the output of System X can be found from test 
input/output pairs when the input signal in questions is a weighted superposition of the test 
inputs. For example, consider the weighted superposition examples on Slide 4.A.3 and 
suppose that we know that System X responds to the complex exponentials of frequency 
𝑓, 2𝑓 and 3𝑓 as 𝑜𝑢𝑡𝑝𝑢𝑡1 𝑡 , 𝑜𝑢𝑡𝑝𝑢𝑡2 𝑡 , and 𝑜𝑢𝑡𝑝𝑢𝑡3 𝑡 , respectively. If System X is linear, 
i.e. the above two conditions hold, then the output of System X to 𝑔2(𝑡) on Slide 4.A.3 is 
going to be 𝛼1𝑜𝑢𝑡𝑝𝑢𝑡1 𝑡 + 𝛼2𝑜𝑢𝑡𝑝𝑢𝑡2 𝑡 . This means that for any different input 𝑔2(𝑡) one 
can obtain by varying the weights 𝛼1 and 𝛼2, we can find the output by substituting these 
values in 𝛼1𝑜𝑢𝑡𝑝𝑢𝑡1 𝑡 + 𝛼2𝑜𝑢𝑡𝑝𝑢𝑡2 𝑡 . Similarly, we can find the output in response to all 
different input 𝑔3(𝑡) that one can obtain by varying three weights 𝛼1, 𝛼2 and 𝛼3 by 
substituting them in 𝛼1𝑜𝑢𝑡𝑝𝑢𝑡1 𝑡 + 𝛼2𝑜𝑢𝑡𝑝𝑢𝑡2 𝑡 + 𝛼3𝑜𝑢𝑡𝑝𝑢𝑡3 𝑡 . 
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7.2 Linear Time-Invariant Systems
• What is a (1) linear and (2) time-invariant system?

1. Linear Systems: System X is linear if the following two conditions 
are satisfied for all arbitrary selection of input1(𝑡) and input2(𝑡)

I. The response to  𝑎 × input1(𝑡) is 𝑎 × output1(𝑡) for any complex 
number 𝑎 ∈ ℂ.

II. The response to input1 𝑡 + input2(𝑡) is output1 𝑡 + output2(𝑡)

output1(𝑡)input1(𝑡)
System X

output2(𝑡)input2(𝑡)
System X

input1 𝑡 + input2 𝑡

System X

• Consider two input/output pairs for an otherwise unknown system X:

and

𝑎 × output1 𝑡
System X

𝑎 × input1 𝑡

output1 𝑡 + output2 𝑡



As an example, let’s investigate the linearity of the complex gain/attenuation system which 
simply multiplies its input with a non-zero complex number ℎ. Because ℎ is a complex 
number, it has a magnitude denoted by |ℎ| and a phase denoted by ∠ℎ(see, slide 2.B.2). 
When multiplied with ℎ, the magnitude of the input will be weighted by |ℎ| and its phase will 
be added ∠ℎ. If the magnitude is larger than one, the system will have an amplification 
effect, if the magnitude is smaller than one, the system will have an attenuation effect. 

The output in response to an arbitrary signal 𝑔1(𝑡) is 𝑦1 𝑡 = ℎ𝑔1 𝑡 . Similarly, for another 
input 𝑔2(𝑡) the output will be 𝑦2 𝑡 = ℎ𝑔2 𝑡 .

Now, let’s test the conditions of linearity:

If we scale the first input by 𝑎 and drive the system with 𝑎𝑔1(𝑡), the output will be 
ℎ 𝑎 𝑔1 𝑡 , which is nothing but ℎ times the input. This quantity is also 𝑎 times the output 
to 𝑔1(𝑡) as a result of the commutativity of multiplication:
ℎ 𝑎 𝑔1 𝑡 = 𝑎(ℎ 𝑔1 𝑡 ) and thus ℎ 𝑎 𝑔1 𝑡 = 𝑎 𝑦1(𝑡).
As a result, the first condition of linearity is satisfied.

If we drive the system with the summation of 𝑔1 𝑡 and 𝑔2(𝑡), the output is ℎ( 𝑔1 𝑡 +
𝑔2(𝑡)) and in turn, as a result of the distributive property of multiplication, 
ℎ  𝑔1 𝑡 + 𝑔2 𝑡 = ℎ𝑔1 𝑡 + ℎ𝑔2 𝑡 . This quantity is nothing but the individual outputs, 
i.e., ℎ  𝑔1 𝑡 + 𝑔2 𝑡 = 𝑦1 𝑡 + 𝑦2(𝑡). Therefore, the second condition of linearity is also 
satisfied. 

As a result, the complex gain/attenuation system is a linear system.
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7.3 Linear Time-Invariant Systems
Example 9: The complex gain/attenuation is a linear system. 

Complex gain/attenuation 
ℎ = ℎ 𝑒 ∠

𝑦 𝑡 = ℎ𝑔(𝑡)𝑔(𝑡)

The complex gain/attenuation response to 
𝑔 (𝑡) is y 𝑡 = ℎ𝑔 (𝑡) and the response to 
𝑔 (𝑡) is y 𝑡 = ℎ𝑔 (𝑡). 

I. The response to 
𝑎𝑔 (𝑡) is ℎ𝑎𝑔 𝑡 = 𝑎ℎ𝑔 (𝑡) which equals to 
                                    = 𝑎𝑦 𝑡 . 
Therefore, the first condition is satisfied.

II. The response to 
𝑔 𝑡 + 𝑔 (𝑡) is ℎ 𝑔 𝑡 + 𝑔 𝑡 = ℎ𝑔 𝑡 + ℎ𝑔 (𝑡) which equals to
                                     = 𝑦 𝑡 + 𝑦 (𝑡). 
Therefore, the second condition is satisfied.

Linear System 
Certificate

I.

II.



As a counter example, let’s investigate the linearity of a system which maps inputs to 
outputs using a square-law; it finds the square at the input as its output. For example, its 

output in response to an arbitrary signal 𝑔1(𝑡) is 𝑦1 𝑡 = 𝑔1 𝑡
2
. Similarly, for another 

input 𝑔2(𝑡) the output will be 𝑦2 𝑡 = 𝑔2 𝑡
2

.

Now, let’s test the conditions of linearity:

If we scale the first input by 𝑎 and drive the system with 𝑎𝑔1(𝑡), the output will be y1 𝑡 =

 𝑎 𝑔1 𝑡
2

. This quantity is also 𝑎2 times the output to 𝑔1(𝑡):

 𝑎 𝑔1 𝑡
2

= 𝑎2  𝑔1 𝑡
2

and thus  𝑎 𝑔1 𝑡
2

= 𝑎2 𝑦1(𝑡).
As a result, the first condition of linearity is not satisfied. This output should have been 
𝑎𝑦1(𝑡) to satisfy the condition.

If we drive the system with the summation of 𝑔1 𝑡 and 𝑔2(𝑡), the output is  𝑔1 𝑡 +

𝑔2 𝑡
2

. After expanding the sum of squares, we find that this quantity equals to

𝑔1 𝑡
2

+ 𝑔2 𝑡
2

+ 2𝑔1 𝑡 𝑔2 𝑡 , which is nothing but the individual outputs added twice 
the product of the inputs, i.e., 𝑦1 𝑡 + 𝑦2 𝑡 + 2𝑔1 𝑡 𝑔2(𝑡). Therefore, the second condition 
of linearity is NOT satisfied, either. The output should have been 𝑦1 𝑡 + 𝑦2 𝑡 to satisfy 
the condition.

As a result, the square-law is not a linear system. Such systems are referred to as non-
linear systems.
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7.4 Linear Time-Invariant Systems
Example 10: The square-law is not a linear system – it is a non-linear system. 

The square-law system
.

𝑦 𝑡 = 𝑔 𝑡𝑔(𝑡)

The square-law output to 

𝑔 (𝑡) is y 𝑡 = 𝑔 𝑡 and the response to 

𝑔 (𝑡) is y 𝑡 = 𝑔 𝑡 . 
I. The response to 

𝑎𝑔 (𝑡) is 𝑎𝑔 𝑡 = 𝑎 𝑔 𝑡  which equals to 
                                    = 𝑎 𝑦 𝑡 . 
The first condition is NOT satisfied (should have been 𝑎𝑦 (𝑡) ).

II. The response to 

𝑔 𝑡 + 𝑔 (𝑡) is 𝑔 𝑡 + 𝑔 𝑡 = 𝑔 𝑡 + 𝑔 𝑡 + 2𝑔 𝑡 𝑔 (𝑡)

which equals to  = 𝑦 𝑡 + 𝑦 𝑡 + 2𝑔 𝑡 𝑔 (𝑡). 
Therefore, the second condition is NOT satisfied (should have been 
only 𝑦 𝑡 + 𝑦 𝑡 ).

Linear System 
Certificate

I.

II.



The second important property of a system is related to whether it maintains its behaviour 
and characteristic unchanged over time. Systems which remain unchanged in this aspect 
are called time-invariant. 

A more precise descriptor for a time-invariant system makes use of time-shifted versions of 
input signals. In particular, if a time-shifted input induces the same output as the original 
signal with a time-shift that equals to the time-shift of the input, then the system is time-
invariant. 

Mathematically, a time-shift of 𝜏 is introduced by subtracting 𝜏 from the time-variable 𝑡, e.g. 
𝑔 𝑡 − 𝜏 is the 𝜏 shifted version of 𝑔(𝑡) in time. This can be verified by noticing that

𝑔 𝑡 − 𝜏 |𝑡=𝜏 = 𝑔 𝑡 |𝑡=0 (reads g of t minus 𝜏 evaluated at 𝑡 equals to 𝜏 equals to g of 𝑡
evaluated at 𝑡 equals to 0),

i.e. the origin point 𝑡 = 0 of 𝑔(𝑡) is at 𝑡 = 𝜏 for 𝑔 𝑡 − 𝜏 .

An unknown system (referred to as System X here) is time-invariant if the output in 
response to 𝑔(𝑡) denoted by 𝑦1(𝑡) becomes shifted in time by 𝜏 when the input is replaced 
by 𝑔 𝑡 − 𝜏 . 

The linear system in Example 9 and the non-linear system in Example 10 are both time-
invariant systems (prove as an exercise). 
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7.5 Linear Time-Invariant Systems
• Time-invariance is about maintaining the behaviour and 

characteristics unchanged over time.
2. Time-invariant Systems: A system is time-invariant if the response to 

a time-shifted input is the response to the original signal shifted in time 
with the same amount.
In other words, if an arbitrary input signal 𝑔(𝑡) induces 𝑦 (𝑡) and its 𝜏
shifted version 𝑔(𝑡 − 𝜏) induces 𝑦 (𝑡), the system is time-invariant if 
𝑦 𝑡 = 𝑦 (𝑡 − 𝜏).  

Certified Time-
invariant 
System

I.

System X

System X

𝑔(𝑡)

𝑡0

𝑦 (𝑡)

𝑡0

𝑦 (𝑡)

System X

𝑔(𝑡 − 𝜏)

𝑡0 𝜏

𝑦 (𝑡)

𝑡0 𝜏



The output of an LTI system in response to a complex exponential is a weighted version of 
the complex exponential, where the weight is a complex number ℎ𝑓 (i.e. the weight 

consists of a magnitude ℎ𝑓

and a phase ∠ℎ𝑓 ), and depends on the frequency. In other words, an LTI system has a 
complex gain ℎ𝑓 reserved for a complex exponential of frequency 𝑓. These weights 
uniquely characterise LTI systems; two systems are identical only when their 
corresponding weights are the same for all different frequencies 𝑓 ∈ ℝ.

One can capture all such weights in a function that maps frequencies to complex weights, 
i.e. define a function 𝐻: ℝ → ℂ that maps frequency value 𝑓 ∈ ℝ to the coefficient ℎ𝑓. This 
function is called the frequency response of the system. LTI systems are characterised 
uniquely by their frequency response. 

In other words, if we consider the set of all systems and the subset of LTI systems (which 
is at the intersection of the subset of linear systems and the subset of time-invariant 
systems), each element in the subset of LTI system can be identified by its frequency 
response. 
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All Systems

8.1 Characterisation of LTI Systems: 
Frequency response

• If a system is linear and time-invariant (LTI), then its response to any complex exponential is a weighted 
complex exponential with the same frequency. The weight is assigned to that particular frequency by the 
system.

LTI System
ℎ = ℎ 𝑒 ∠

𝑤 𝑡 = ℎ 𝑒𝑠 𝑡 = 𝑒

• An LTI system thus can be represented by the list 
of pairs {(𝑓, ℎ )} for all 𝑓 ∈ ℝ.

𝑓, ℎ  for 𝑓 ∈ ℝ

Linear 
Sys

Time-invariant 
Sys

LTI Sys

• The function 𝐻: ℝ → ℂ that maps 
frequency value 𝑓 ∈ ℝ to the 
coefficient ℎ is called the 
frequency response of the 
system, i.e. 

𝐻 𝑓 = ℎ

is the system’s frequency 
response.



As an example, let us consider the ideal low-pass filter. This system is an LTI system with 
a frequency response that is of magnitude 1 (and phase zero) for frequencies 𝑓 between 
− 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 < 𝑓 < 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 and zero for all other frequencies. Here, the cut-off frequency 
𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 is a user selected parameter. The output of this system is zero if the input is a 
complex exponential at a frequency higher than the selected cut-off frequency 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 or 
lower than −𝑓𝑐𝑢𝑡−𝑜𝑓𝑓. The characterising frequency response in terms of its magnitude and 
phase are depicted on the top right figures on the slide.

A complementary example is an ideal high-pass filter. This system is also an LTI system 
with a frequency response that is of magnitude 1 (and phase zero) for frequencies 𝑓 that is 
higher than a selected cut-off, i.e., 𝑓 > 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 or lower than the negative cut-off 
frequency, i.e. 𝑓 < −𝑓𝑐𝑢𝑡−𝑜𝑓𝑓. The characterising frequency response are given on the 
bottom right figures on the slide.
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8.2 Characterisation of LTI Systems: Examples

• Example 11: An ideal low pass filter multiplies complex 
exponentials with low frequencies within  −𝑓 < 𝑓 < 𝑓

with one, and others with zero. Here, 𝑓 is called the cut-off 
frequency. Therefore, the (ideal) low pass frequency response is 

𝐻 𝑓 =
1, |𝑓| < 𝑓 ,

0, |𝑓| ≥ 𝑓 .

• Example 12: An ideal high pass filter multiplies complex 
exponentials with high frequencies 𝑓 > 𝑓 with one, 
and others with zero. Also here 𝑓 is called the cut-off 
frequency. Therefore, the (ideal) high pass frequency 
response is 

𝐻 𝑓 =
1, 𝑓 > 𝑓 ,

0, 𝑓 ≤ 𝑓 .

𝑓
0 𝑓

∠𝐻 𝑓

−𝑓

−𝑓
𝑓

0 𝑓

∠𝐻 𝑓

𝑓
0 𝑓

|𝐻 𝑓 |

−𝑓

1

−𝑓
𝑓

0 𝑓

|𝐻 𝑓 |
1



The frequency response of 𝐻(𝑓) of an LTI system is very useful in finding its output in 
response to any arbitrary input: for example, consider low-pass filtering a rectangular pulse 
of width ½. The time-domain representation of the input signal is depicted on the top-left 
figure on the slide. The spectrum of this input revealing its complex exponential 
components (see, Section 5.B) is on the bottom-left found using the Fourier Transform 
analysis formula (10). 

In this example, the cut-off frequency is selected as 3 Hz. The output of the LPF is going to 
supress all frequencies that are not between −3 Hz and 3 Hz. Therefore, the output 
spectrum has to be the spectrum depicted on the bottom right. In other words, the 
frequency-domain representation of the output equals to the input spectrum for all 
frequencies 𝑓 between −3 < 𝑓 < 3 and zero, otherwise. The output we seek to find is 
therefore the time-domain representation of this spectrum, which can be found using the 
Fourier Transform synthesis formula (11). The time-domain representation of the output 
signal has thus the graph on the top-right.
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9.1 Input/Output Relations of LTI Systems

Example 13: Consider the ideal low pass filter with  𝑓 = 3 Hz                                                                       
and inputting a cosine of frequency 𝑓 = 1 Hz 

(see, also Slide 5.B.7).  
𝐻 𝑓 =

1, |𝑓| < 3,
0, |𝑓| ≥ 3,

LPF

𝑓0 3

𝐻 𝑓

−3

1𝑔(𝑡) y(𝑡)

Step 4: Find the output in the time-domain

Step 3: Find output in the 
frequency-domain using (2.7)Step 1: Depict input in the time-domain

Step 2: Find input in the frequency-domain

𝑓
0 1

1

2
𝛿 𝑓 − 1

𝐺(𝑓)

−1

1

2
𝛿 𝑓 + 1

𝑡 (𝑠)

𝑔(𝑡)

1−1

𝑡 (𝑠)

𝑦(𝑡)

1−1

𝑓
0 1

1

2
𝛿 𝑓 − 1

𝑌(𝑓)

−1

1

2
𝛿 𝑓 + 1



The frequency response of 𝐻(𝑓) of an LTI system is very useful in finding its output in 
response to any arbitrary input: for example, consider low-pass filtering a rectangular pulse 
of width ½. The time-domain representation of the input signal is depicted on the top-left 
figure on the slide. The spectrum of this input revealing its complex exponential 
components (see, Section 5.B) is on the bottom-left found using the Fourier Transform 
analysis formula (10). 

In this example, the cut-off frequency is selected as 3 Hz. The output of the LPF is going to 
supress all frequencies that are not between −3 Hz and 3 Hz. Therefore, the output 
spectrum has to be the spectrum depicted on the bottom right. In other words, the 
frequency-domain representation of the output equals to the input spectrum for all 
frequencies 𝑓 between −3 < 𝑓 < 3 and zero, otherwise. The output we seek to find is 
therefore the time-domain representation of this spectrum, which can be found using the 
Fourier Transform synthesis formula (11). The time-domain representation of the output 
signal has thus the graph on the top-right.
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9.2 Input/Output Relations of LTI Systems

Example 14: Consider the ideal low pass filter with  𝑓 = 3 Hz                                                                       
and inputting a pulse of width ½ (see, also Example 4).  𝐻 𝑓 =

1, |𝑓| < 3,
0, |𝑓| ≥ 3,

LPF

𝑓0 3

𝐻 𝑓

−3

1
1/20 1−1

𝑔(𝑡)

𝑡 (𝑠)

Step 1: Depict Input in the time-domain:

y(𝑡)

Step 3: Find output in the frequency-domain using (2.7)

3

3

−3

−3

𝑔(𝑡)

Step 2: Find the input’s spectrum in the 
frequency-domain:

−3

−3

3

3

Step 4: Find the output in the time-domain



The previous example can be generalised to find the output 𝑦(𝑡) of any LTI system that is 
characterised by its frequency response 𝐻 𝑓 in response to an arbitrary input signal 𝑔(𝑡). 
As established in Section 5, the time-domain and frequency-domain representations (or 
spectrum, see, Section 5.B.4) of a signal are equivalent, i.e., they are two sides of the 
same coin. The output of an LTI system to 𝑔(𝑡) will hence have a spectrum that is the 
product of the input spectrum 𝐺 𝑓 and the system response 𝐻 𝑓 . The time-domain 
representation of the output can be found by using the Fourier Transform synthesis 
formula with the output spectrum 𝑌 𝑓 = 𝐺 𝑓 𝐻 𝑓 .

Here, the Fourier Analysis decomposes the input signal into as an infinite/finite sum of 
weighted complex exponentials and records those weights in the spectrum 𝐺(𝑓) (see, 
Equation (10)). In response to a complex exponential, an LTI  system produces a version 
of it further weighted by 𝐻 𝑓 and in response to an infinite/finite sum of complex 
exponentials, the output will be their sum with each one multiplied by 𝐻(𝑓) corresponding 
to its frequency 𝑓. As the weight of the complex exponential of frequency 𝑓 in the input is 
𝐺 𝑓 , its weight at the output becomes 𝐺 𝑓 𝐻 𝑓 . Therefore, the spectrum of the output 
signal is Y 𝑓 = 𝐺 𝑓 𝐻 𝑓 . The time-domain representation of the output can then be 
found simply by using the Fourier synthesis formula (see, Equation (11) ) which finds the 
sum of complex exponentials weighted with 𝑌 𝑓 .

As a result, the frequency response of an LTI system specifies its input-output relation as 
described above by establishing which output signal it would generate in response to an 
arbitrary input. The result is a straightforward multiplication in the Frequency-domain 
demonstrating the power of using frequency domain representations.
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9.3 Input/Output Relations of LTI Systems

𝐻(𝑓)

𝑦 𝑡 ↔ 𝑌 𝑓𝑔 𝑡 ↔ 𝐺(𝑓)

Fourier 
Analysis
(Fourier 

Transform) 𝐻(𝑓)

𝐺(𝑓) 𝑌 𝑓 = 𝐺 𝑓 𝐻(𝑓) Fourier 
Synthesis
(Inverse 
Fourier 

Transform)

𝑔(𝑡) 𝑦(𝑡)

≡

• The input/output relation of an LTI system with a frequency response 𝐻(𝑓) is thus:
The spectrum of the output signal is the multiplication of the input spectrum with the system’s 
frequency response.

(equivalent to)

𝑌(𝑓) = 𝐻 𝑓 𝐺(𝑓)



The response of an LTI system to an impulse 𝛿(𝑡) at the input is called its impulse 
response. The spectrum of an impulse in time equals to one for all frequencies (see, 
Section 5.B.8). Therefore, the time-domain representation of an LTI system’s response to 
an impulse is nothing but the inverse Fourier Transform of its frequency response. In other 
words, the frequency response of an LTI system and its impulse response are Fourier 
transform pairs. 

Thus, the impulse response provides a characterisation for an LTI system that is 
equivalent to a frequency response. 
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9.3 Input/Output Relations of LTI Systems

Fourier 
Analysis

𝐻(𝑓)

𝐺 𝑓 = 1 𝑌 𝑓 = 𝐺 𝑓 𝐻 𝑓
           = 1 × 𝐻 𝑓

= 𝐻(𝑓)

Fourier 
Synthesis

𝑔 𝑡 = 𝛿(𝑡) 𝑦 𝑡 = ℎ(𝑡)

BONUS
• An LTI system is also characterised by its impulse response, i.e. its output in 

response to an impulse:
Remember that the time-domain impulse is one for all frequencies (see, Part I, 
Signals, Slide 3.C.3).

All Systems

𝑓, 𝐻(𝑓)  for 𝑓 ∈ ℝ

Linear 
Sys

Time-invariant 
Sys

LTI Sys

𝑡, ℎ(𝑡)  for 𝑡 ∈ ℝ

• The frequency response of the system, 
i.e. 𝐻(𝑓) and its impulse response ℎ(𝑡)
are Fourier Transform pairs.



The impulse response ℎ(𝑡) is a time-domain characterisation of an LTI system, and 
reveals an important property about the system; is this system physically realisable? 
Physically realisable systems are called causal systems and have an impulse response 
that is zero for all time instants before zero, i.e. 𝑡 < 0. This means that the system does 
not produce any output before the impulse occurs at the time origin 𝑡 = 0. Any non-zero 
value at the output thus comes at or after the impulse, i.e. for 𝑡 ≥ 0.

If, in contrast, a system’s impulse response has non-zero values for time instants before 
zero, i.e. ℎ 𝑡 ≠ 0 for some 𝑡 < 0, this means the system is an “oracle” and produces 
output in anticipation of an impulse to occur at time zero. Such systems are not physically 
realisable and are called non-causal systems.  
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9.4 Input/Output Relations of LTI Systems
BONUS

𝐻 (𝑓)

𝑦 𝑡 = ℎ (𝑡)𝑔 𝑡 = 𝛿(𝑡)

𝑡
0

𝑡
0

1. The impulse response reveals causality properties of an LTI system:
LTI systems can be causal or non-causal. Causal systems are physically realisable 
in contrast to non-causal systems which cannot be realised.
An LTI system is causal if its response to an impulse is zero for all time instants 𝑡 <
0 (i.e. before the impulse occurred). Otherwise, it is non-causal

Example 14: The following system is causal as its impulse response is non-zero only for 𝑡 ≥ 0.   



An example to non-causal systems is the ideal LPF. Let us consider the ideal LPF with a 
cut-off at 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 = 3 Hz  (see, Section 8.A.2). The impulse response of this system can 
be found using the Fourier Transform synthesis equation (see, Section 9.3), or the inverse 
Fourier Transform of its impulse response. The resulting impulse response is depicted in 
the top-right figure. We notice that the output has ripples before the impulse occurs at 𝑡 =
0 and builds up to a peak at 𝑡 = 0 in anticipation of an impulse. Changing the cut-off would 
only change the period of these ripples and the envelope, but not make the response zero 
for 𝑡 < 0. As a result, the ideal LPF is a non-causal system. 

One can obtain a causal LPF by designing first the impulse response, and then use the 
Fourier Transform analysis formula to verify its frequency response. We should, however, 
expect the frequency response to be non-ideal as now we have the constraint on the 
impulse response to be causal. An example design will use zero for 𝑡 < 0 and a window of 
the most significant part of the ideal response after 𝑡 ≥ 0. Such an impulse response is 
depicted in the bottom-left figure. The corresponding frequency response is given inside 
the system block and reveals that the frequency response is now not “ideal”: It has ripples 
in its amplitude response, and non-zero phase in contrast to the ideal response. 
Nevertheless, this system is physically realisable and imperfection might be ignored for 
resulting with small deviations from the ideal output.   
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9.5 Input/Output Relations of LTI Systems
BONUS

Causal LPF
𝑔 𝑡 = 𝛿(𝑡)

Example 16: A non-ideal but causal LPF has the frequency and impulse response below. Note that 
the frequency response has ripples in the magnitude and non-zero phase. 

Example 15: The ideal LPF is a non-causal system as its impulse response is non-
zero for 𝑡 < 0. In other words, it starts to produce output before the impulse occurs.   

LPF

𝑓0 3

𝐻 𝑓

−3

1

𝑔 𝑡 = 𝛿(𝑡)
𝑦 𝑡

= ℎ(𝑡)

𝑡
0

𝑡
0

𝑦 𝑡
= ℎ(𝑡)

3−3



The input/output relation of an LTI system can be established based on its response to an 
impulse 𝛿(𝑡), i.e. its impulse response ℎ 𝑡 .

This relation is given by Equation (12), which is known as the convolution integral (or 
convolution operation). Equation (12) finds the output of an LTI system in response to the 
input signal 𝑔(𝑡) in terms of its impulse response ℎ 𝑡 . In other words, the convolution 
integral transforms the response to an impulse, to the response to an arbitrary input 𝑔 𝑡 . 
If the system is causal, then ℎ(𝑡) is zero for all 𝑡 < 0. Therefore, the integrand is zero for 
all 𝜏 > 𝑡 and the upper limit of the integral can be replaced with 𝑡 without affecting the 
result. The resulting convolution integral for a causal LTI system is given in equation (13).

For further information on the topic, see Section 2 in [1].
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9.6 Input/Output Relations of LTI Systems

BONUS 2. The impulse response ℎ(𝑡) of an LTI system specifies its output 𝑦(𝑡) in 
response to an input 𝑔(𝑡) through an operation known as convolution:

ℎ 𝑡 ↔ 𝐻(𝑓) 𝑦 𝑡𝑔 𝑡

𝑦 𝑡 = 𝑔 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 (12)

• If the system is causal, then ℎ(𝑡) is zero for 𝑡 < 0, thus the convolution operation becomes

𝑦 𝑡 = 𝑔 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 (13)



The goal of these notes was to introduce the student to the basic concepts in signals (or 
time functions) and systems (or signal transformers). In particular, time-frequency 
representations of signals were one of the main points considered. The frequency-domain 
representation of signals proved useful when investigating how systems transform them 
and output new signals in response. The second main point was connected to this view of 
systems and was the frequency response of an important class of systems referred to as 
linear-time invariant (LTI) systems. 

The exposition started with the set of real numbers ℝ and the real line. Then, we 
considered a rotating wheel on a plane and the trigonometric functions to find the 
coordinates of a point on the wheel. We demonstrated how the same problem can be 
treated using complex numbers on a the complex number plane, and introduced complex 
exponentials to model a point on a rotating wheel.

Then, we showed that signals as time functions can be decomposed as a weighted sums 
of complex exponentials: periodic functions can be represented as a series sum of 
complex exponentials that have integer multiples of the fundamental frequency, and non-
periodic functions can be represented as an integral of (infinitesimally) weighted complex 
exponentials across the entire frequency spectrum. Therefore, time-domain and 
frequency-domain representations of signals are two sides of the same coin. 

Next, we introduced systems as entities that output signals in response to input signals. 
Specifically, we focused on LTI systems and characterised them with their frequency-
response that reveals how the output will weight the complex exponential contents of the 
input. For the interested student, we extended the discussion to include the time-domain 
impulse response of an LTI system, and how it characterises the causality/physical 
realisability of the system. Also introduced was the convolution operation that uniquely 
specifies the output signal in the time-domain using the input signal and the system 
impulse response.

Page 55

• Real number line, a rotating wheel on a plane, and trigonometric functions

• Complex number plane, the rotating wheel and complex exponentials

• Signals as complex/real functions of time

• Two sides of the same coin #1: Periodic signals and Fourier series coefficients

• Two sides of the same coin #2: Non-periodic signals and frequency-domain representations via The 
Fourier Transform

• Systems as entities outputting signals in response to input signals.

• Interconnections and basic building blocks

• Linear and Time Invariant Systems (LTI), and their response to complex exponential (harmonic) signals

• The frequency-response of LTI systems

• Characterisation of LTI systems by their impulse response, causality, the convolution operation 

10 Summary



Most of the contents of these notes can be found in further detail in the two references on 
the slide. Reference [1] provides a complete exposition of signals and systems, so 
introductory sections should be considered for further reading. A list of specific sections for 
self-study are listed on the slide. Reference [2] has a single chapter reviewing signals & 
systems. The students are encouraged to read this Chapter 2 of [2] for further details.

There are some excellent online content on these topics. Three links that were previously 
cited in these notes are given on this slide. The students are strongly encouraged to watch 
the visualisations in these videos.
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Further Reading
1. Chapter 2 “Representation of Signals and Systems”  in [2] 
2. Chapter 1 “Signals and Systems” in [1] 
3. Chapter 2 “Linear Time Invariant Systems” in [1]
4. Chapter 3 “Fourier Series Representation of Periodic Signals” 

Sections 3.0-3.5  in [1]

Links to online content on Fourier series/transform (repeated)

1. The exponential function: https://www.youtube.com/watch?v=v0YEaeIClKY
2. Fourier Series: https://www.youtube.com/watch?v=r6sGWTCMz2k
3. Fourier Transform: : https://www.youtube.com/watch?v=spUNpyF58BY


